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The concurrence of ecological and evolutionary
processes often arises as an integral part of various
biological and social systems. We here study eco-
evolutionary dynamics by adopting two paradigmatic
metaphors of social dilemmas with contrasting
outcomes. We use the Prisoner’s Dilemma and
Snowdrift games as the backbone of the proposed
mathematical model. Since cooperation is a costly
proposition in the face of the Darwinian theory of
evolution, we go beyond the traditional framework
by introducing punishment as an additional strategy.
Punishers bare an additional cost from their own
resources to try and discourage or prohibit free-riding
from selfish defectors. Our model also incorporates
the ecological signature of free space, which has
an altruistic-like impact because it allows others to
replicate and potentially thrive. We show that the
consideration of these factors has broad implications
for better understanding the emergent complex
evolutionary dynamics. In particular, we report the
simultaneous presence of different subpopulations
through the spontaneous emergence of cyclic
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dominance, and we determine various stationary points using traditional game-theoretic
concepts and stability analysis.

1. Introduction
The dilemma of cooperation [1–4] under the Darwinian theory of evolution [5] has gained
increasing attention among many interdisciplinary disciplines. Selfish individuals always look
for higher personal benefits to maximize their welfare. This ubiquitous behaviour among
those self-interested individuals leads to a scenario where it is risky to cooperate. Thus, the
extinction of cooperation is perhaps the most unfortunate outcome that eventually leads to
the tragedy of the commons [6]. However, in many real-world situations, including excessive
usage of antibiotics [7], birds taking care of other’s offspring [8], imperfect vaccination [9],
grooming each other of vervet monkeys [10], acid rain [11], food sharing of the vampire
bat [12] and many more, the emergence and persistence of cooperation is a widespread
phenomenon in nature and social communities. Owing to the conflict of interests between the
collective and selfish rationality, understanding the underlying mechanisms for the endurance
of cooperation is a formidable challenge among different scientific communities [13,14]. The
evolutionary game theory [15–17] is an insightful theoretical tool to resolve this long-standing
pendulum of how cooperation evolves [18] contradictory to the much-celebrated Darwin’s
theory of evolution. Primarily game theory helps to recognize the consequences of strategic
and economic decisions of humans [19]. Later, John Maynard Smith introduced evolutionary
game theory, an application of the mathematical theory of games, to shed some light on the
evolution of animal behaviour [16,20,21]. Nowadays, it has become an active interdisciplinary
topic for understanding several social interactions in real-world systems [22], including
the evolution of human language [23], host–parasite interactions [24], price decision [25],
bacterial population dynamics [26] and strategy conflict in the form of dilemma [27], to name
a few.

So under simplified assumptions, there are two types of individuals in society. One group
continuously contributes to the common pool selflessly and helps to maintain the evolution of
cooperation. On the other hand, another class of people always engages in some antisocial, selfish
activities, posing threats to the collaborative efforts of cooperative behaviour. A few social games
have been proposed based on these ideas. The paradigmatic examples are the Prisoner’s Dilemma
(PD) game [27] the Chicken or Snowdrift (SD) game [20,28] the Stag Hunt game [29] and so
on. For the spreading of collective and cooperative habits, rewarding the cooperators [30–33] is
an efficient approach for encouraging cooperative behaviour. However, rewarding cooperation
may seem to be an expensive proposition in a large population of cooperators. Moreover, the
positive incentives towards cooperators may fail to stabilize cooperation in a few cases [31].
Thus, punishing a population of cheaters may be a better proposal for promoting and maintaining
cooperation instead of the tedious effort of taxing to reward cooperators who behaved properly.
Punishing bad deeds ultimately helps to maintain the healthy functioning of societies and elevates
the cooperative behaviour in populations. The effect of punishment on collective behaviours
is immensely investigated in numerous empirical and theoretical studies among theorists and
experimentalists [30–41]. Besides, other parameters exist in the social evolution, whose selfless act
promotes the fitness of other individuals without expecting compensation for that action [42,43].
One of such altruistic variables is free space. Lots of earlier investigations deal with free space
using the concept of mobility from different perspectives [44–54]. Nevertheless, the explanatory
charitable role of free space in the realm of evolutionary game theory has been less explored till
now.

This present article considers two different traditional symmetric two-person games: PD and
SD. The sole motivation behind the choice of two dissimilar games is to capture the essence of
behavioural heterogeneity [55–58] among social creatures. Interaction between subpopulations
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of different cultural backgrounds has potential impacts on the cooperation level. There are other
two-person games, but these two games have attracted a lot of attention for their simplicity and
enormous applications in social, ecological and biological systems [16,27,59–61]. The population
of players plays the PD game with probability p, whereas they can play the SD game with
complementary probability (1 − p). Additionally, we consider the advantages provided by the
free space for all other individuals. Here, free space is treated as an ecological variable that does
not expect any benefits for its selfless act. This one-sided altruistic behaviour is omnipresent in
our society even though selfish actions by an agent fetch it relatively more benefit. The sharing
of resources with people in need, the decent actions of men in the presence of an attractive
woman and holding the door open for strangers are all well-known examples of altruism. The
introduction of this ecological variable helps us to derive an eco-evolutionary model [62–72] that
triggers a valuable way of analysing the simultaneous impact of ecological and evolutionary
changes. Furthermore, we incorporate the influence of punishment on evolutionary dynamics,
which often arises spontaneously as a way of penalizing the defectors for their free-riding
mentality. Most of the previous studies on punishment deal with public goods games [73–76] and
the impact of punishment on evolutionary multi-game [77–79] has yet to gain its well-deserved
attention.

The proposed eco-evolutionary theoretical framework gives rise to rich dynamical
complexities with several evolutionary stable states. The resulting dynamics might be capable of
unfolding new fascinating trends in understanding the interactions of ecological and evolutionary
processes. The long-term behaviour of our model under favourable circumstances may lead
to periodic dynamics indicating the spontaneous emergence of cyclic dominance [26,80–82].
Several real-life examples, including the mating strategy of side-blotched lizards [83], accidental
extinction of one of the participating species [84], fundamental problems of stability for the
competition of two defensive alliances [85], an explanation of the oscillating frequency of
lemmings [86], the genetic regulation in the repressilator [87] and so on, display such a
procedure of cyclical interactions. The probabilistic nature of our model seems more promising
for encapsulating biodiversity with slow–fast dynamics [88–90], which is quite common in
the atmosphere and oceanic dynamics. The stationary states are interpreted using the game-
theoretic concepts of the Nash equilibrium and the evolutionarily stable strategy. The emergence
of stationary states on coupled systems [91–97] also attracts numerous researchers of nonlinear
dynamics due to their multiple practical applications.

Besides such convergent stationary point outcomes, the dynamics of competing subpopulations
also exhibit the non-stationary point complex solutions in the form of chaotic attractors [98–
102]. Such a strange chaotic coexistence prevents each subpopulation from becoming extinct.
This highly irregular fluctuation portrays the sensitive dependence on initial conditions. In
fact, our proposed model is multi-stable, indicating the vulnerability of the system to small
perturbations. Unfortunately, this chaotic attractor for chosen parameter values represents an
overcrowded solution as the density of each subpopulation lies outside the closed interval
[0, 1]. In fact, the meaning of chaos, i.e. the coexistence of a countably infinite number
of unstable periodic orbits from the contexts of game theory, is not well understood yet.
However, still we can provide a comprehensive picture of the overall dynamics through
the bifurcation analysis. The reason behind the sudden demolition of attractors for some
specific choices of parameters is illustrated through the collision of the chaotic attractor with a
coexisting unstable stationary point [103–105]. The subsequent part of this paper is organized
as follows. We elaborately discuss our eco-evolutionary model in the presence of cooperators,
defectors and punishers under the influence of philanthropic free space in §2. After a detailed
description of our model, we describe the dynamics using various bifurcation diagrams in
§3. For particular parameter values, we scrutinize the basin of attraction, revealing multi-
stable behaviour. The theoretical findings through stability analysis are validated using rigorous
numerical studies. We also provide a special case where the free space yields equally likely
benefits to each subpopulation. Finally, we summarize our results with some conclusions
in §4.
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2. Mathematical model
To capture the evolving pattern of real-world systems, we consider two archetypal models
of social interaction, viz. the PD and SD games. These models can describe the essence
of several social puzzles, even though they cannot capture many details of the complex
real-life interactions. In these games, two individuals play against each other, and they
must choose between two possible actions: cooperation (C) and defection (D). The joint
behaviour of the two players for these two games is represented by the following 2 × 2 payoff
matrix

C D( )
C R S
D T P

.

The payoff value R signifies a reward towards both players choosing C. A defector playing with
another defector yields the punishment P. The temptation T is given to a defector for exploiting
a cooperator. By comparison, the exploited cooperator receives the sucker’s payoff S for playing
with a defector. Depending upon the ordering of these four payoff values, we may be able to
achieve different 2 × 2 games. If the ranking of these payoffs is T > R > P > S, we arrive at the
classical PD game. This inequality suggests defection is the best and an intelligent choice for the
self-interested individuals regardless of the opponent’s strategy. If another partner chooses to
cooperate, then the defector gains more as T > R. If the other player decides to defect, defection
also brings a better payoff as P > S. Consequently, both players end up with P, as defection
is the dominant strategy for both players. Thus, in any circumstances, the cooperators lead to
extinction, unable to resist invasion by defectors. But the payoff relation R > P suggests mutual
cooperation is superior in terms of payoff to the dominant strategy mutual defection. This
dilemma describes how cooperation arises spontaneously in the evolution of species ranging
from single cellular organisms to vertebrates opposing the fact that widespread defection is
predicted by game theory. Interestingly, a slight variation in the ordering of these payoff values,
such as T > R > S > P, leads to a more favourable game for cooperators. Note that only the
ranking of P and S is exchanged compared with the PD game. Now, the best action depends
on the opponent. Rational players will defect if the other cooperates, but will cooperate if
the other defects to maximize their respective payoffs. This game is known as the SD game.
Despite the notable difference of both game dynamics, the R > P relation holds in both games,
suggesting the interaction between two defectors is worse than the interaction between two
cooperators.

We consider an additional strategy punishment (P) to impose a fine on defectors for
their free-riding behaviour and exploitation of collective efforts. This independent strategy
is a special kind of cooperation. Whenever a punisher meets a cooperator, they will both
receive the reward R. A defector earns a reduced payoff value of T − δ when confronted
by a punisher. By comparison, a punisher will get S − δ if the other player decides to
defect. This δ > 0 is the amount of fine deducted from a defector’s payoff to maintain
a better environment for the survival of cooperation. However, the punisher has to put
up with the cost of policing δ > 0 too. We also consider free space (F) as an ecological
variable. Any player can use the free space for their replication, and free space unselfishly
reduces its fitness by helping others without any expectations of reward. We incorporate this
necessary altruistic behaviour of free space in the payoff matrix by assuming that the free
space will receive a payoff value 0 when it interacts with others. Although it provides a
positive payoff σ1, σ2, and σ3 to cooperators, punishers and defectors, respectively. Without
loss of any generality, the payoff values are taken as RPD = RSD = 1, SPD = SSD = 0, TPD =
TSD = β > 1, PPD = η ∈ [0, 1) and PSD = −η ∈ (−1, 0]. Thus, we arrive at two distinct payoff
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matrices:

A =

C P D F⎛
⎜⎜⎝

⎞
⎟⎟⎠

C 1 1 0 σ1
P 1 1 −δ σ2
D β β − δ η σ3
F 0 0 0 0

and B =

C P D F⎛
⎜⎜⎝

⎞
⎟⎟⎠

C 1 1 0 σ1
P 1 1 −δ σ2
D β β − δ −η σ3
F 0 0 0 0

(2.1)

in which the entries portray the payoff accumulated by the players on the left. A and B are
the matrices corresponding to the PD and SD games, respectively. A population of players can
play the PD game with probability p, and they can play the SD game with the complementary
probability (1 − p). Thus, we obtain a payoff matrix for the two games as

E = pA + (1 − p)B =

C P D F⎛
⎜⎜⎝

⎞
⎟⎟⎠

C 1 1 0 σ1
P 1 1 −δ σ2
D β β − δ 2pη − η σ3
F 0 0 0 0

. (2.2)

Note that if we choose η = 0 then the term containing both p and η will vanish. Hence, we
eliminate the case η = 0 from our study and choose η ∈ (0, 1), as we wish to investigate the impact
of varying p. The payoff values of E are obtained from the interactions of the games. We treat
these payoff values as reproductive success. Hence, a player with a higher payoff can leave more
offspring. We assume that x, y, z and w are the fractions of cooperators, punishers, defectors and
free space, respectively. The combination of game dynamics and ecological dynamics helps us to
construct a system of nonlinear equations. The available free space w = 1 − (x + y + z) lies within
the closed interval [0, 1]. When w = 0, then overall population density x + y + z reaches 1. This
case (w = 0) represents the unavailability of reproductive opportunities. On the other hand, w = 1
reflects the extinction of the overall population with x + y + z = 0. Let fC, fP, fD and fF be the
average payoffs of cooperators, punishers, defectors and free space, respectively, at any given
point of time. These average payoffs can be easily calculated from the payoff matrix E. Clearly,

fF = 0, (2.3)

as free space promotes everyone else’s welfare without taking any advantage from others. The
average payoff of cooperators is given by

fC = x + y + σ1w = (1 − σ1)x + (1 − σ1)y − σ1z + σ1. (2.4)

Here, we eliminate the variable w using the relation x + y + z + w = 1. Similarly, the average
payoffs of punishers and defectors are given by

fP = (1 − σ2)x + (1 − σ2)y − (δ + σ2)z + σ2 (2.5)

and
fD = (β − σ3)x + (β − δ − σ3)y + (2pη − η − σ3)z + σ3. (2.6)

Thus, the fractions x, y and z can control the average payoffs fC of cooperators, fP of punisher
and fD of defectors at any given point in time. We further assume these average payoffs can
uniquely determine their respective birth rates, and all individuals die at an equal and constant
rate ξ > 0. Thus, we obtain a simple eco-evolutionary dynamical model describing the changes in
frequencies of cooperators, punishers and defectors over time as follows:

ẋ = x[fC − ξ ],

ẏ = y[fP − ξ ]

and ż = z[fD − ξ ].

⎫⎪⎪⎬
⎪⎪⎭

(2.7)
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Table 1. Parameters with their respective domain and their physical significance.

parameters physical interpretation domain

ξ constant death rate >0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

β temptation parameter >1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

δ fine for controlling selfish behaviour of defectors >0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p probability of playing PD game [0, 1]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

η payoff for mutual defection (0, 1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ1 free space-induced benefit towards C >0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ2 free space-induced benefit towards P >0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ3 free space-induced benefit towards D >0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

One should notice that the per capita growth rate of each of the subpopulations C, P and
D depends on the fraction of free space w, and the free space-induced benefits σ1, σ2 and σ3.
They have a vital role in the fitnesses of all subpopulations. Thus, the inclusion of this effect of
free space in the reproduction rate of all subpopulations helps us to exclude the unnecessary
multiplication of w with their average payoffs, which is often observed in the previous studies
[62,70]. Moreover, along the line of earlier works [62,67,70], this set of equations is a natural
extension of the replicator dynamics [15,106].1

Since w = 1 − (x + y + z), thus the frequencies of free space change over time using the
following relation:

ẇ = −ẋ − ẏ − ż. (2.9)

Substituting the expressions of fC from equation (2.4), fP from equation (2.5) and fD from
equation (2.6) in equation (2.7), we get the following eco-evolutionary model:

ẋ = x[(1 − σ1)x + (1 − σ1)y − σ1z + (σ1 − ξ )],

ẏ = y[(1 − σ2)x + (1 − σ2)y − (σ2 + δ)z + (σ2 − ξ )]

and ż = z[(β − σ3)x + (β − δ − σ3)y + (2pη − η − σ3)z + (σ3 − ξ )],

⎫⎪⎪⎬
⎪⎪⎭

(2.10)

with the parameters η ∈ (0, 1), p ∈ [0, 1], β > 1 and δ, ξ , σ1, σ2, σ3 > 0. The physical interpretation
of each parameter is given in table 1.

3. Results

(a) Multi-stability
For the numerical investigation, the system (2.10) is integrated using the Runge–Kutta fourth-
order method with integration step-length h = 0.01. The simulations are performed for 1.2 × 106

iterations unless stated otherwise. At first, we discuss the role of initial conditions on our
proposed model. Since the fractions of each subpopulation must lie within the closed interval
[0, 1] for physically meaningful solutions in the context of evolutionary game theory, we only
choose initial conditions (x0, y0, z0) maintaining the constraint x0 + y0 + z0 + w0 = 1. In figure 1
for a specific choice of parametric values, we choose four different initial conditions for which the
trajectories of system (2.10) converge to diverse attractors. Throughout the article, we maintain the
relation x0 + y0 + z0 = 0.9 unless stated otherwise. The existence of solutions of the system (2.10) is

1The extraction of traditional replicator dynamics is possible by using ξ = f̄ , where

f̄ = xfC + yfP + zfD
x + y + z

= xfC + yfP + zfD
1 − w

(2.8)

indicates the mean fitness with w �= 1.
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Figure 1. (a–h)Multi-stability:We use four distinct initial conditions to understand themulti-stable behaviour of the proposed
model (2.10). Each column represents the same attractor, where the top panel depicts the two-dimensional projection of the
attractor, and the bottom panel portrays the temporal evolution of the three subpopulations. The pentagrammarker indicates
the initial condition, which is also explicitly written in each subfigure. Red, magenta and blue regions designate the fraction
of cooperators x, punishers y and defectors z, respectively. The interior initial condition (x0 �= 0, y0 �= 0, z0 �= 0) always gives
rise to the interior stationary point E7. The initial condition with at least one zero component leads to other solutions. For other
information, see the text. Parameters: σ1 = 0.775, σ2 = 1.0, σ3 = 0.7,β = 1.2, δ = 0.3, ξ = 0.7, p= 0.55 and η = 0.75.
(Online version in colour.)

assured since the right-hand side of each of the nonlinear equations is continuously differentiable.
In fact, the right-hand side of the system (2.10) is locally Lipschitz for any bounded subset of
R

+ ∪ {0} × R
+ ∪ {0} × R

+ ∪ {0}. Hence for any non-negative initial condition, the uniqueness of
the solution of the system (2.10) is guaranteed.

The solution corresponding to the initial condition (0.45, 0.45, 0) leads to an unbounded
solution. This result is not shown in figure 1. However, a different cooperator-free solution
appears for the initial condition (0, 0.45, 0.45), as shown in figure 1c,g. This result is physically
meaningful, as initially there is no subpopulation of cooperators (x0 = 0), so there is no chance
of reproducing C in the future. Additionally, a close inspection of the right-hand sides of the
equations (2.10) suggests that (0, 0, 0) is a stationary point of the system.

We denote the stationary point (0, 0, 0) as E0. A different initial condition (0.45, 0, 0.45) for
the same set of parameter values brings the punisher-free solution (figure 1d,h). One may be
surprised that the initial condition (0.45, 0.45, 0) does not help reach the defector-free stationary
point E4 = (α1, α2, 0) with 0 < α1 + α2 = (ξ − σ1)/(1 − σ1) = (ξ − σ2)/(1 − σ2) ≤ 1. This is due to our
choice of parameter values in figure 1. The stationary point E4 exists if ξ = 1 or σ1 = σ2. Moreover,
its stability depends on the following eigenvalues

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ1 = σ3 − ξ + (β − σ3)(α1 + α2) − δα2,

and the two roots of the equation

λ2 − λ[σ1 + σ2 − 2ξ − 2α1(σ1 − 1) − α2(σ1 − 1) − α1(σ2 − 1) − 2α2(σ2 − 1)]

−α1α2(σ1 − 1)(σ2 − 1) = 0.

(3.1)

Interestingly in figure 1d,h, the fraction of cooperation dominates the fraction of defectors as
x > z, although initially we choose x0 = z0 = 0.45. In fact, the initial conditions in figure 1a,b,c,e,f,g
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are found to be effective for forming punisher clusters. In all these figures, the relation y > z > x
indicates the increment of the degree of punishers in a significant way. For figure 1a,b and e, f, the
trajectories converge to the interior stationary point E7 = (x∗, y∗, z∗) for two non-identical initial
conditions (0.3, 0.3, 0.3) and (0.18, 0.63, 0.09). Here,

x∗ = 	2

δ(δ − σ1 + σ2 − δσ1)
,

	2 = ησ2 − ησ1 − δσ3 + δξ − σ1ξ + σ2ξ − δ2σ1 + δ2ξ + βδσ1

− βδξ + 2ηpσ1 − 2ηpσ2 + βσ1ξ − βσ2ξ − 2δσ1ξ

+ δσ2ξ + δσ3ξ + ησ1ξ − ησ2ξ − 2ηpσ1ξ + 2ηpσ2ξ ,

y∗ = 	3

δ(δ − σ1 + σ2 − δσ1)
,

	3 = δσ3 + ησ1 − ησ2 − δξ + σ1ξ − σ2ξ − βδσ1 + βδξ − 2ηpσ1 + 2ηpσ2

− βσ1ξ + βσ2ξ + δσ1ξ − δσ3ξ − ησ1ξ + ησ2ξ + 2ηpσ1ξ − 2ηpσ2ξ

and z∗ = σ2 − σ1 + σ1ξ − σ2ξ

δ − σ1 + σ2 − δσ1
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.2)

For a physically meaningful solution, the constraints x∗, y∗, z∗ ∈ (0, 1) and x∗ + y∗ + z∗ ∈ (0, 1]
are maintained. The solution transforms to E7 = (x∗, y∗, z∗) = (0.1731, 0.2885, 0.2308) for the set
of parameters σ1 = 0.775, σ2 = 1.0, σ3 = 0.7, β = 1.2, δ = 0.3, ξ = 0.7, p = 0.55 and η = 0.75 used
in figure 1. Figure 1a,e reveals how this set of parameters tends to favour punishers, although
initially, the fractions of all subpopulations are equally distributed with x0 = y0 = z0 = 0.3 and
x0 + y0 + z0 = 0.9. Besides, we choose a different interior initial point (0.18, 0.63, 0.09). For this
initial condition too, the system (2.10) converges to the interior equilibrium point E7 (figure 1b, f ).
Although here x0 = 2z0 and y0 = 7z0, the defectors are not outperformed by cooperators in the
long-term asymptotic behaviour. This scenario helps to sustain the punishers to resist the invasion
of defectors. The collective behaviour of figure 1 may suggest that the multi-stability of our eco-
evolutionary model occurs only at the boundary of the basin of attraction with at least one
zero component. But there still are a few suitable choices of parameters enabling the multi-
stable behaviour of the system with interior initial conditions. Figure 2 delineates the basin of
attraction for the set of parameters σ1 = 1.2, σ2 = 1.5, σ3 = 1.4, β = 1.5, δ = 0.5, ξ = 1.1, η = 0.1
and p = 0.1. This set of parameters satisfies the stability criterion of both the stationary points
E2 = (0, (ξ − σ2)/(1 − σ2), 0) with 0 < (ξ − σ2)/(1 − σ2) ≤ 1 and E3 = (0, 0, (ξ − σ3)/(2pη − σ3 − η))
with 0 < (ξ − σ3)/(2pη − σ3 − η) ≤ 1. The eigenvalues of the Jacobian matrix corresponding to the
stationary point E2 are

λ1 = ξ − σ2,

λ2 = −σ3 − ξ − βσ2 + δσ2 + βξ − δξ + σ2ξ − σ3ξ

σ2 − 1

and λ3 = −σ1 − σ2 − σ1ξ + σ2ξ

σ2 − 1
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.3)

The eigenvalues of the Jacobian matrix corresponding to the stationary point E3 are

λ1 = ξ − σ3,

λ2 = σ2 − ξ − (δ + σ2)(σ3 − ξ )
η + σ3 − 2pη

and λ3 = σ1 − ξ − σ1(σ3 − ξ )
η + σ3 − 2pη

.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.4)

We perform the numerical investigation in figure 2 maintaining the relation x0 + y0 + z0 = 0.9
as mentioned earlier. Such a constraint allows considering an initial point (0.9, 0, 0). This type of
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Figure 2. Basin of attraction: Red, magenta and blue regions represent the three distinct stationary points E1, E2 and E3,
respectively. The simulations are performed for sufficiently long iterations (1.5 × 107). Initial conditions are varied by preserving
the constraint x0 + y0 + z0 = 0.9. Only the initial condition (0.9, 0, 0) tends to the punisher-free and defector-free stationary
point E1. Other initial conditions cause a cooperator-free society. Depending on those initial conditions, the system facilitates
either the promotion of defectors or the emergence of punishers. Parameters:σ1 = 1.2,σ2 = 1.5,σ3 = 1.4,β = 1.5,δ = 0.5,
ξ = 1.1,η = 0.1 and p= 0.1. The coexistence of these different stable states reveals themanifestation ofmulti-stability in our
proposed model. For further details, go through the main text. (Online version in colour.)

initial condition with y0 = 0 and z0 = 0 allows the system (2.10) to converge to the stationary state
E1 = ((ξ − σ1)/(1 − σ1), 0, 0) with 0 < (ξ − σ1)/(1 − σ1) ≤ 1. The eigenvalues of the Jacobian matrix
corresponding to the stationary point E1 are

λ1 = ξ − σ1,

λ2 = σ3 − ξ + (β − σ3)(σ1 − ξ )
σ1 − 1

and λ3 = σ2 − ξ − (σ2 − 1)(σ1 − ξ )
σ1 − 1

.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.5)

In fact, our proposed model with (x0, 0, 0) initial condition (x0 �= 0) gives rise to the solution

x =
(σ1 − ξ )

(
1 + tanh

(
c1 + t

)(
(σ1/2) − (ξ/2)

))
2σ1 − 2

, y = 0 and z = 0, (3.6)

where c1 is the initial condition-dependent constant. Similarly, the initial condition (0, y0, 0) with
y0 �= 0 leads to the solution

x = 0, y =
(σ2 − ξ )

(
1 + tanh

(
c2 + t

)(
(σ2/2) − (ξ/2)

))
2σ2 − 2

and z = 0, (3.7)

and the initial condition (0, 0, z0) with z0 �= 0 brings

x = 0, y = 0 and z =
(σ3 − ξ )

(
1 + tanh

(
c3 + t

)(
(σ3/2) − (ξ/2)

))
2η + 2σ3 − 4ηp

, (3.8)

where c2 and c3 are the initial condition-dependent constants. The multi-stable behaviour of
our model is depicted through figure 2, where red, magenta and blue signify the convergence
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towards the stationary points E1, E2 and E3, respectively. This universal nonlinear aspect of multi-
stability plays the role of a pivot towards the emergence and switching among several stable
states [96,107,108]. Thus, to neglect the multi-stability of the eco-evolutionary dynamics, we fix the
initial condition (0.3, 0.3, 0.3) throughout the rest of the article. This choice does not provide any
biased attitude towards any subpopulations, as we choose an equal initial value x0 = y0 = z0 = 0.3.
We also maintain the constraint x0 + y0 + z0 = 0.9 for this specific choice.

(b) Interplay of different parameters
Now, we investigate the role of parameters on our proposed model. Figure 3a describes the
impact of the temptation parameter β ∈ (1, 2]. The increment of β provides additional benefits
to defectors. Thus, beyond a certain threshold of β, the invasion of defectors challenges the
sustainability of cooperators. The cooperators survive within the range (1, 1.31]. Here, the
stationary point E7 describes the coexistence of all subpopulations. Although the fraction of
cooperators show a decreasing trend within β ∈ (1, 1.31], however it promotes the punisher’s
population y. y increases initially till β ≈ 1.31. After that it experiences a reduction along with
the extinction of cooperators. But a natural expectation of growth in the defector’s population is
not observed in this figure. z remains constant throughout the interval β ∈ (1, 2] for our choice
of parameters σ1 = 0.775, σ2 = 1.0, σ3 = 0.7, δ = 0.3, ξ = 0.7, p = 0.55 and η = 0.75. The interplay
between other parameters may restrict the increment of z. For the chosen set of parameters, the
stationary point E5 = (0, β1, β2) stabilizes for β > 1.31. Here,

β1 = δσ3 − ησ2 − δξ + ηξ − σ2ξ + σ3ξ + 2pησ2 − 2pηξ

η + σ3 − βδ − σ2β − 2pη + δσ2 + δσ3 − ησ2 + δ2 + 2pησ2

and β2 = σ3 − ξ − βσ2 + δσ2 + βξ − δξ + σ2ξ − σ3ξ

η + σ3 − βδ − σ2β − 2pη + δσ2 + δσ3 − ησ2 + δ2 + 2pησ2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.9)

with β1, β2 ∈ (0, 1) and β1 + β2 ∈ (0, 1].
The coexistence of punishers and defectors is found to occur also in δ ∈ (0, 0.115), as shown

in figure 3b. Other parameters are set at the same values, just like in figure 3a with β = 1.1. The
emergence of cooperation along with punishers and defectors is noticed in δ ∈ [0.115, 0.7]. The
fraction of defectors shows a decreasing tendency till δ = 0.7, after which the value of z saturates.
This declination of defector’s frequency allows the cooperators to thrive. However, the uprise
of δ harms the punishers. Initially, the subpopulation of P enjoys dominance over the defectors
and exhibits a monotonic increasing behaviour till δ = (0, 0.115). For δ ≥ 0.115, the fraction of
punishers y experiences a monotonically drop off, and ultimately it will dwindle to zero at δ = 0.7.
This behaviour of y is mainly due to the nature of punishers who always impose a fine δ on
defectors. Besides, the punishers have to bear the same amount of cost from its payoff. Thus,
the increment of δ leads to an unfavourable scenario for the punishers. However, the existence
of punishers constantly challenges the defectors. Thus, the density of defectors decreases with
the presence of punishers. As soon as punishers die out, the fraction of defectors saturates. For
δ > 0.21, cooperation emerges as the dominant strategy over other subpopulations. At δ = 0.7,
the system stabilizes to the punisher-free stationary point E6 = (γ1, 0, γ2) with γ1, γ2 ∈ (0, 1) and
γ1 + γ2 ∈ (0, 1]. Here,

γ1 = −ησ1 − ηξ + σ1ξ − σ3ξ − 2pησ1 + 2pηξ

η + σ3 − βσ1 − 2pη − ησ1 + 2pησ1

and γ2 = σ3 − ξ − βσ1 + βξ + σ1ξ − σ3ξ

η + σ3 − βσ1 − 2pη − ησ1 + 2pησ1
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.10)

To realize the role of η ∈ (0, 1), similarly we draw the bifurcation diagram of the population
model (2.10) with respect to η in figure 3c for fixed parameter values σ1 = 0.775, σ2 = 1.0, σ3 = 0.7,
β = 1.1, δ = 0.3, ξ = 0.7 and p = 0.55. Clearly, the behaviour of the system remains unaltered as the
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Figure 3. Dependence of different parameters on cooperation, punishment and defection: (a) The fraction of cooperators is
dramatically decreasing as a function ofβ . The defectors are getting an additional advantage with increasingβ , which causes
the extinguishing of cooperators beyond a critical value ofβ . Punishers are initially enjoying inevitable growth but ultimately
strive to survive. Beyond a specific critical value of β , the favourable environment towards defectors increases the likelihood
of dominance of D. Here, δ = 0.3, η = 0.75 and σ2 = 1.0. (b) A transition from a cooperator-free society to the coexistence
of all subpopulations is observed with variation of δ, and ultimately it will originate a punisher-free community at δ ≈ 0.7.
The punishing cost allows decreasing the rate of defectors. Since the punisher has to tolerate the same burden of punishing,
their populationwill decline to extinction beyond a critical value of δ. Cooperators succeed in dominating thewhole population
beyond a particular value of δ. Here,β = 1.1,η = 0.75 andσ2 = 1.0. (c)η is never able to destabilize the coexistence of three
subpopulations for the choice of parameters β = 1.1, δ = 0.3 and σ2 = 1.0. Yet, as η → 1−, the fraction of cooperators
decreases, and the fraction of punishers increases. Throughout the interval, cooperation emerges as the dominant strategy.
(d) Punishers prevail with increment of σ2 for β = 1.1, δ = 0.3 and η = 0.75. Initially, the system (2.10) settles down to
the punisher-free stationary point E6. The free space-induced benefits towards P have a positive effect on the emergence of
punishers leading to the coexistence of different subpopulations.Moreover, the enhancement in the subpopulation of punishers
is comparatively larger than in the other’s subpopulation within the intervalσ2 ∈ [0.87, 1]. The red, magenta and blue regions
represent the fraction of cooperators x, the fraction of punishers y and the fraction of defectors z. The other parameters are kept
fixed atσ1 = 0.775,σ3 = 0.7, ξ = 0.7 and p= 0.55. The initial condition is (0.3, 0.3, 0.3) for all subfigures. (Online version in
colour.)

observed dynamics x > z > y remains the same throughout the interval η ∈ (0, 1) for our chosen
parameter values and fixed initial condition (0.3, 0.3, 0.3). Despite the dominance of cooperators,
one may notice that as η → 1−, the fraction of cooperators monotonically diminishes. Since
mutual defection in our model leads to (2pη − η), this will reduce to 0.1η for our choice of p = 0.55.
Thus, this additional incentive towards defectors with increasing η causes a lessening of the
fraction of cooperation. At the same time, increasing η helps the evolution of punishers as its
fraction y undergoes a monotonic growth. The fraction of defectors remains the same throughout
the investigated interval. This finding suggests that the reduction in x yields a positive growth
in y. Later, we will show the fascinating emergent dynamics of the proposed system with respect
to η for a different set of parameter values in figure 7. There, we will again focus on the role of η

with a comprehensive and rigorous analysis and comparative discussion.
In figure 3d, we inspect the influence of σ2 ∈ (0, 1]. Cooperation is favoured over the whole

interval of σ2 ∈ (0, 1] for our choice of parameter values and initial condition. The numerical
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Figure 4. Two parameter phase diagrams of the model with cooperators, punishers and defectors: the increment in p allows
everyone to play the PD game more frequently, which in turn inhibits the evolution of cooperation. (a) η denotes the mutual
defection parameter. For smaller values of p, a suitable range of η facilitates a punisher-free society. Whereas for larger values
of p, cooperators cannot resist the invasion of defectors due to the simultaneous impact of both parameters η and p. Finally,
C is extinguished, giving rise to the stationary point E5. Parameters:σ3 = 0.7,β = 1.2 and δ = 0.3. (b) For a more significant
value of p (transition from blue to red region), the fine δ for restricting the defectors for their selfish mentality is found to be
beneficial for the emergence of cooperation. However, the choice of different parameter values also plays an influential role in
the proposed model. The additional burden for policing the defectors in terms of higher δ may lead to a punisher-free (green)
community. Parameters: σ3 = 0.7, β = 1.2 and η = 0.5. (c) The free space-induced benefits towards defectors offer them a
better chance to survive. As a matter of fact, defection is the only possible asymptotic state (black region) for higher values of
σ3 and p. Parameters:β = 1.2, δ = 0.3 andη = 0.5. (d) Largerβ also seems to be unfavourable for cooperators. Parameters:
σ3 = 0.7, δ = 0.3 and η = 0.5. Blue, green, red, black and white regions stand for the stationary point E5, E6, E7, E3 and an
overcrowded solution, respectively. Results are obtained for σ1 = 0.775, σ2 = 1.0 and ξ = 0.7. All simulations are done by
varying p ∈ [0, 1] for large integrations (1.5 × 107) with fixed initial condition (0.3, 0.3, 0.3). (Online version in colour.)

investigation suggests that the overall dynamics x > z > y remains the same. Yet we anticipate
the rise in the subpopulation of the punishers due to the increment of free space-induced benefits
towards P. But we cannot ignore the role of other parameters. Initially, the system converges to
the punisher-free stationary point E6. At σ2 ≈ 0.87, the larger social security from the free space
gives the punishers opportunity for emergence. The stabilization of the stationary point E7 allows
the survival and coexistence of all subpopulations. In fact within this interval σ2 ∈ [0.87, 1], the
increment of y is slightly better than the other two variables x and z. This signature attests to the
positive role of σ2 over the punishers. Although it never destroys the dominance of cooperators
over the other subpopulations, at least for our chosen parameter values and fixed initial condition.

The third row of the payoff matrix (2.2) contains five distinct parameters β, δ, σ3, p and η.
We want to explore the interplay between these parameters. Here, p represents the probability
of playing the PD game, where mutual defection is the only strong Nash equilibrium. Definitely,
we expect with increasing p, the fraction of cooperation will reduce. This expected behaviour is
portrayed through the numerical investigation in figure 4. Figure 4 is drawn for the parameters
σ1 = 0.775, σ2 = 1.0 and ξ = 0.7. The simulations are carried out for 1.5 × 107 iterations with fixed
initial condition (0.3, 0.3, 0.3). Two-dimensional parameter space with respect to the parameters
p and η in figure 4a illustrates that the cooperators vanish beyond a critical p. Green, red, blue
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and black regions delineate the stationary points E6, E7, E5 and E3, respectively. The white region
describes an overcrowded population with x + y + z > 1. However, this regime may contain two
different kinds of solutions. An overcrowded solution may represent a solution with x + y + z > 1,
where each of x, y and z is a finite number. This type of solution is found in the left white portion
of figure 4a. There is another possibility of attaining an unbounded solution in terms of x, y
and z. This kind of unbounded solution is already observed for σ1 = 0.775, σ2 = 1.0, σ3 = 0.7,
β = 1.2, δ = 0.3, ξ = 0.7, p = 0.55 and η = 0.75 (not shown in figure 1) with initial condition
(0.45, 0.45, 0). We also detect such an unbounded solution of system (2.10) in the right white
portion of figure 4a. Since both solutions are physically meaningless from the context of the game
in our study, we do not distinguish between them based on this finiteness and represent them
with the same white region.

The transition from E6 to E5 via the stabilization of E7 suggests the enhancement of probability
of playing the PD game reduces the chance of survivability of C. For smaller values of p, we notice
a transition of E7 (red) to E6 (green) for increasing η. Since larger values of η indicate a better
payoff for mutual defection, it gives rise to a punisher-free society. Smaller values of p bring the
further opportunity of playing the SD game where the persistence of cooperation is the expected
outcome. A similar kind of transition is noticed from E7 (red) to E5 (blue) for increasing η.
Here, the extinction of cooperators is encountered for our chosen parametric values. For larger
p, individuals get more chance to play the PD game, where defection is the evolutionarily stable
strategy, even though all individuals would be better off if they all chose cooperation.

We scrutinize the simultaneous effect of p and δ in figure 4b. This figure reveals that for a
suitable intermediate choice of p, increasing δ helps the cooperators to survive, and we observe
a transition from E5 (blue) to E7 (red). This result displays how punishment towards defectors
proves to be effective for the emergence of cooperation. Thus, a cooperator-free community
changes the coexistence of all strategies. However, for a smaller value of p, we detect a large region
of punisher-free stationary point E6. Although the cooperators survive against the invading
defectors, the punishers must bear a higher policing cost with increasing δ. Thus, this increasing
δ provides a less favourable environment for the punishers. Nevertheless, the interplay of other
parameters is crucial, proven for a higher value of p. For higher values of p, the system transforms
from a cooperator-free society (E5) to stable coexistence of all subpopulations (E7), restricting the
extinction of punishers.

Figure 4c uncovers the transition from E6 to E5 through the stabilization of E7 in the p-σ3 plane.
The punishers are initially not present in the two-dimensional p-σ3 plane when the stationary
point E6 only exists. Later, with increasing p, individuals get sufficient opportunity to play both
games. This chance of playing the multi-game leads to the survivability of punishers through the
coexistence of all subpopulations. Ultimately, the fraction of cooperators asymptotically vanishes
in the blue region, as the increment of probability p allows them to play the PD game more,
and defectors are fitter in the PD game. Even for a larger value of p and σ3, we only locate a
cooperator-free and punisher-free stationary point E3 (black). Larger σ3 generally increases the
fitness of defectors, and for p → 1−, individuals play the PD game more often. We all know that
defectors are most suited in such circumstances, and hence defectors outcompete other strategies.

For the set of parameter values σ1 = 0.775, σ2 = 1.0, σ3 = 0.7, δ = 0.3, ξ = 0.7 and η = 0.5, we
investigate the role of β in figure 4d. With increasing β, the frequency of cooperators should
decrease as the advantage of defectors increases. The transition from the stationary point E6 to
E7 and then the stabilization of E5 reveals the same story. Initially, the punishers face challenges
for survival due to our choice of parameter values and initial conditions. Later, the revival of
punishers brings them into the hunt, and the coexistence of all subpopulations occurs. Finally,
the cooperators are extinct due to the massive advantage given towards the defectors in terms
of temptation parameter β. Now, looking at figure 4d, one can also interpret the positive role
of p in our model. Even for moderate smaller values of β, larger p challenges the evolution of
cooperation as we obtain the cooperator-free stationary point E5 (blue). This result is physically
meaningful, too, as for larger p, individuals have more tendency to play the PD game. In fact, for
larger β, any p does not bring any significant change in the overall dynamics. All the subfigures in
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figure 4 contain a white region containing an overcrowded solution. Although they may possess
significance from the perspective of nonlinear dynamics, they are physically meaningless as per
the game’s theoretical aspect. Later, we provide a brief overview of this overcrowded solution
using the nonlinear dynamical system approach.

(c) Cyclic dominance
Till now, we are partial towards the stationary point solution of the model (2.10) because it is
easier to interpret those results under the limelight of the evolutionary game theory. We have
performed a detailed numerical simulation to find a suitable set of parameter values where
the existing stationary points are always unstable. We set the parameters at σ1 = 0.52, σ2 = 0.72,
σ3 = 0.41, β = 2.60, δ = 1.39, ξ = 0.5, p = 0.4 and η = 0.1. For this set of parametric values, there
exist four different biologically significant stationary points E0 = (0, 0, 0), E5 = (0, 0.1815, 0.1283),
E6 = (0.0594, 0, 0.0933) and E7 = (0.0525, 0.0308, 0.1153). There exist other stationary points too, but
those stationary points contain negative coordinates. Hence, we do not consider those physically
meaningless points in the study. The eigenvalues of the Jacobian corresponding to the extinction
stationary point E0 are

λ1 = σ1 − ξ = 0.02,

λ2 = σ2 − ξ = 0.22

and λ3 = σ3 − ξ = −0.09.

⎫⎪⎪⎬
⎪⎪⎭

(3.11)

The eigenvalues of the Jacobian corresponding to the cooperator-free stationary point E5 are

λ1 = 0.0404,

λ2 = −0.0022 + 0.1911i

and λ3 = −0.0022 − 0.1911i.

⎫⎪⎪⎬
⎪⎪⎭

(3.12)

The eigenvalues of the Jacobian corresponding to the punisher-free stationary point E6 are

λ1 = 0.0398,

λ2 = −0.0058 + 0.0717i

and λ3 = −0.0058 − 0.0717i.

⎫⎪⎪⎬
⎪⎪⎭

(3.13)

The eigenvalues of the Jacobian corresponding to the interior stationary point E7 are

λ1 = −0.0199,

λ2 = 0.0021 + 0.1062i

and λ3 = 0.0021 − 0.1062i.

⎫⎪⎪⎬
⎪⎪⎭

(3.14)

Thus, E0 is a saddle, whereas the other stationary points E5, E6 and E7 are saddle-foci. All these
suggest the trajectories will not settle down to a constant vector. The solution of the system (2.10)
must be a function of time wandering in the orthant R

+ × R
+ × R

+. If the solution is a bounded
vector exhibiting periodic behaviour, then the system possesses a limit cycle. We observe the
emergent eco-evolutionary dynamics after running for sufficiently long iterations (1.5 × 107) to
avoid computational error due to sensitive initial data. The system exhibits a periodic attractor
for this set of parameter values (figure 5). The two-dimensional phase space projections in
figure 5f –h suggest the saddle-focus E7 (shown by hexagram marker) always lies within the
interior of the closed trajectory. Figure 5 reveals another interesting dynamical feature of this
periodic attractor. For this set of parametric values and fixed initial condition (0.3, 0.3, 0.3), the
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Figure 5. Time evolution of strategies: the periodic dynamics indicate a loop of cyclic dominance, allowing the maintenance
of biodiversity through the coexistence of three strategies. The evolutionary dynamics help maintain a degree of cooperation,
even under the adverse condition with such an enormous temptation to defect. Individual dynamics of each subpopulation is
shown in subfigures (a–c). The overall population density is reflected through the subfigure (d). Parameters are set at σ1 =
0.52,σ2 = 0.72,σ3 = 0.41,β = 2.60, δ = 1.39, ξ = 0.5, p= 0.4 andη = 0.1. The simulations are carried out for 1.5 × 107

iterations with fixed integration time-step h= 0.01. The oscillatory dynamics of x, y and z in subfigure (e) allow all cyclically
competing strategies to coexist. The extinction saddle E0, the cooperator-free saddle-focus E5, the punisher-free saddle-focus
E6 and the interior saddle-focus E7 are shown by circle, diamond, square and hexagram marker in the subfigures (f–h). The
arrows indicate the direction of movement along the closed orbit. The dynamics display two clearly disjoint time scales. All the
subfigures are drawn using the fixed initial condition (0.3, 0.3, 0.3). (Online version in colour.)

trajectory evolves slowly within the neighbourhood of the interior saddle-focus E7. We observe
another different comparatively fast time scale that occurs when the trajectory leaves the vicinity
of E7. The existence of two such distinct time scales is ubiquitous in the atmosphere and oceanic
dynamics.

This type of oscillatory dynamics can capture the beauty of governing eco-evolutionary
dynamics. This spontaneous emergence of cyclical interaction gives the perfect window of
opportunity for preserving biodiversity. These oscillatory states provide all strategies with a fair
chance to survive. Although the temptation to defect is immense (β = 2.60), the coexistence of
all competing strategies through cyclic dominance unfolds a surprising route to overcome the
odds of the socio-ecological framework. Figure 5e contemplates how cooperators outcompete the
defectors in a specific time window. However, in a different time window, the defectors overrule
the punishers, who reduce the earnings of defectors by spending a part of their own resources.
These punishers, in turn, outcompete the cooperators for a specific time span in figure 5e. In this
way, any one of the three competitive strategies allows them all to coexist in the presence of a
cyclic dominance. To ensure that the oscillatory dynamics of the system (2.10) remains physically
meaningful, we plot x + y + z as a function of time t in figure 5d and x + y + z lies within [0, 1]. We
also plot the individual periodic dynamics of x (red), y (magenta) and z (blue) in the subfigures
(a–c) of figure 5.

(d) Evolutionary dynamics: a dynamical system approach
Until now we have inspected the evolutionary dynamics of the model (2.10) from the sole
perspective of the evolutionary game dynamics. With the same motivation, we plot the
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Figure 6. Period-halving bifurcations with respect to the probability p: we plot the stationary point solutions of (a) 〈x〉,
(b) 〈y〉 and (c) 〈z〉 for the set of parameter values σ1 = 0.55, σ2 = 1.00, σ3 = 0.70, β = 1.20, δ = 0.30, ξ = 0.70 and
η = 0.10.Wealso plot their respective extrema for time-dependent solutions. The initial condition is kept fixed at (0.3, 0.3, 0.3).
Weobserve overcrowded solutions forp< 0.4with x + y + z > 1. The remaining interval incorporates physicallymeaningful
solutions with two different dynamical behaviours. For a suitable choice of p, the system converges to the interior stationary
point E7, indicating the stable coexistence of cooperators, punishers and defectors. Also, the periodic dynamics promote diverse
coexisting strategies in the population. Punishers overcome the hurdle and become superior for p ∈ [0.4, 0.407], where the
temporal dynamics of all variables x, y and z are periodic. Although all strategies coexist maintaining diversity, the cooperators
become inferior within this oscillating range as the inequality y > z > x is identified. The proposed model allows a higher
likelihood of playing the PD game with increasing p, which will become a conundrum for promoting cooperation. This
expectation is reflected in the stationary state regime of p ∈ (0.407, 1]. (Online version in colour.)

bifurcation diagram in figure 6 with respect to the parameter p for the set of parameter’s values
σ1 = 0.55, σ2 = 1.00, σ3 = 0.70, β = 1.20, δ = 0.30, ξ = 0.70 and η = 0.10. Here, 〈x〉, 〈y〉 and 〈z〉
indicate the relative fraction of cooperators, punishers and defectors, respectively. Thus,

〈x〉 = x
x + y + z

,

〈y〉 = y
x + y + z

and 〈z〉 = z
x + y + z

.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.15)

Clearly, each of these relative fractions is defined only if x + y + z = 1 − w �= 0. But since
the population densities x, y and z are non-negative quantities, the only possibility to obtain
x + y + z = 0 is x = y = z = 0. But the extinction stationary point E0 is stable only when σ1, σ2,
σ3 < ξ , i.e. when the death rate surpasses the free space-induced benefits towards each
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Figure 7. (a–c) One parameter bifurcation diagrams with respect to η: we observe a period-doubling bifurcation from the
interior stationary point E7 under the choice of parameter values σ1 = 0.55, σ2 = 1.00, σ3 = 0.70, β = 1.20, δ = 0.30,
ξ = 0.70 and p= 0.45. We numerically identify a critical value ηc ≈ 0.20 beyond which we obtain only an overcrowded
solution, i.e. a bounded solutionwith x + y + z > 1. There are two types of solutions of system (2.10)withinη ∈ (0, 0.2]. The
first one indicates the coexistence of all strategies through themanifestation of the stationary point E7 forη ∈ (0, 0.186). At the
same time, we recognize an oscillating solution for suitable values ofη ∈ [0.186, 0.2], such that the overall population density
x + y + z lies within the compact interval [0, 1]. This periodic attractor encourages the maintenance of diversity against the
competition between different species. Here, eco-evolutionary dynamics are portrayed through the relative fraction of each
subpopulation. For more details, see the main text. (Online version in colour.)

subpopulation. Figure 6 is drawn for the fixed initial condition (0.3, 0.3, 0.3) and our choice of
parameter values suggests E0 is a saddle. Hence, E0 is always unstable for this set of parametric
values, and thus, (3.15) is well defined.

The system (2.10) experiences a period-halving bifurcation (i.e. inverse period-doubling) for
the chosen parametric values and initial condition (figure 6). Here, the variation of p destroys
a periodic orbit and creates a new periodic trajectory with half of the period of the earlier
periodic orbit. Finally, the system settles down to the stable interior stationary point E7. During
the coexistence of all subpopulations (the stationary state E7), punishers dominate the other
subpopulations. To portray this prominent feature, we plot the bifurcation diagrams of each
of the variables in figure 6a–c. Although we would like to mention there exist two distinct
regimes in figure 6 based on overall population density. There exists a critical value of pc beyond
which we can possess x + y + z ≤ 1. We numerically identify pc ≈ 0.4. Thus, even though our
proposed model within p ∈ [0, 0.4] provides fascinating dynamics, which are meaningful from the
perspective of dynamical systems theory. But they are not physically meaningful from the aspect
of evolutionary game theory, as the overall dynamics should lie within the closed and bounded
interval [0, 1] for a possible interpretation of our results. Within the interval p ∈ [0.4, 1], the system
displays oscillating behaviour for p ∈ [0.4, 0.407] and constant vector (time-independent) solutions
for p ∈ (0.407, 1.0]. The enhancement of p permits more likelihood for playing the PD game,
where defection is more favourable. Thus, the dynamics of 〈x〉 (red) show a decreasing trend
in the stationary state regime. However, the relative fraction of defectors 〈z〉 (blue) remains
constant during this stationary point solution. Interestingly, the monotonic reduction of the
relative fraction of cooperators facilitates the promotion of the relative fraction of punishers. 〈y〉
(magenta) displays the increasing tendency in figure 6b during the occurrence of E7.

Similarly, we look into the qualitative changes of the solutions of the differential equations
given in equation (2.10) with respect to the parameter η. We choose the same set of parameter
values as considered in figure 6 with p = 0.45. We observe the emergence of a new periodic
attractor with double the period from an existing periodic orbit in figure 7. Despite obtaining
such complex dynamical features like period-doubling bifurcations, we have to explore only
the solutions of system (2.10) within the interval η ∈ (0, 0.2]. For η ≤ ηc with ηc ≈ 0.2, the overall
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population density x + y + z lies within the interval [0, 1]. Within this interval (0, 0.2] of η, the
system possesses periodic orbits and an interior stationary point E7. The appearance of periodic
attractors suggests that oscillations among different subpopulations provide flexibility for each
strategy to survive. The stability of E7 with increasing 〈x〉 (red) and decreasing 〈y〉 (magenta)
is noticed in figure 7a,b. The fraction of defectors remains constant during this stationary state
solution of the differential equations (2.10) as depicted through figure 7c. This type of constant
behaviour of D is also observed in figure 3c. Although we have already provided an intuitive
physical explanation behind the constant behaviour of the variable z in the interior stationary
state regime in figures 3c and 6, we now present a justification behind this nature using the
mathematical frame. We have already calculated each coordinate of E7 = (x∗, y∗, z∗) in equation
(3.2). A careful inspection of z∗ suggests z∗ is a function of σ1, σ2, ξ and δ only. z∗ does not depend
on σ3, p, η and β. Hence, we do not identify any change in the fraction of defectors in figures 6
and 7 within the interior stationary state regime, where we scrutinize the dynamics with respect
to the variation of p and η.

Nevertheless, there is a thin difference in the obtained results between figures 3c and 7.
Figure 3c depicts a decrease in the density of cooperators and an increase in the subpopulation of
punishers. Figure 7 contemplates a reverse scenario in contrast to figure 3c. Yet, we consider the
only difference in the values of parameters σ1, β, and p between these two figures. Actually our
choice of p = 0.45 gives 2pη − η = −0.1η for mutual defection. This reduced negative earning of
defectors probably enhances the robustness of cooperation, which is reflected through figure 7a.
This growing density of cooperators becomes the reason for decreasing punishers’ density.
Punishers are particular kinds of cooperators who try to sustain cooperation by preventing
invasion by defectors. The fine δ from the payoff of defectors is deducted from their own
resources. This sacrifice of punishers hampers the growth of punishers. The payoff for mutual
defection in figure 3c is 0.1η, which is always positive. Even our mathematical analysis is also
able to portray the same understanding. The choice of parameter values in figure 3c gives rise to
the stabilization of the interior stationary point E7 = (x∗, y∗, z∗), where

x∗ = 5
13

− η

13
,

y∗ = η

13
+ 1

13

and z∗ = 3
13

.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.16)

This indicates the gradual decrement of the fraction of cooperators and increment of the
fraction of punishers with respect to η, which completely agrees with our numerical inspection
shown in figure 3c. This also verifies our claim that the rate of reduction (η/13) in the density of
cooperators helps to promote the fraction of punishers by the same factor (η/13). We can perform a
similar analysis for figure 7 during the stabilization of the interior stationary point E7 = (x∗, y∗, z∗),
where

x∗ = 5
39

+ η

13
,

y∗ = − η

13
+ 19

39

and z∗ = 3
13

.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.17)

Clearly, this validates the increasing nature of x∗ and lessening of y∗ with respect to η in
figure 7, where the stationary point E7 is stable. Again, the growth in x∗ here by the term η/13
is the same as the rate of diminishing η/13 in y∗. A similar analysis can be supplemented for
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Figure 8. Boundary crisis: the effect ofσ1 on the fractions of cooperators 〈x〉, punishers 〈y〉 and defectors 〈z〉 are shown in (a),
(b) and (c), respectively. For 0< σ1 ≤ 0.49, the attractor is annihilated. The dashed line denotes the relative density of each
subpopulation for the unstable stationary point E6. It collides with the chaotic attractor leading to sudden qualitative changes
in chaotic dynamics of the system (2.10). The disappearance of the chaotic attractor is commonly known as boundary crisis. In
the stationary state regime, we anticipate the enhancement of cooperator’s density with increasing altruistic contribution of
free space towards the cooperators. This expectation is fulfilled as C dominates D and P during the appearance of the stationary
point E6 in the subfigures (a–c). The simulation is carried out for 1.2 × 106 iterations. Parameters:σ2 = 1.00,σ3 = 0.70,β =
1.20, δ = 0.30, ξ = 0.70, η = 0.1 and p= 0.1. (d–f ) The chaotic time evolution of each relative fraction of subpopulation
is plotted for σ1 = 0.515. The simulation for these time evolutions is carried out for sufficiently long 1.5 × 107 iterations with
fixed integration time-step h= 0.01. (Online version in colour.)

figure 6 during the occurrence of E7 = (x∗, y∗, z∗), where

x∗ = 8
39

− 2p
13

,

y∗ = 2p
13

+ 16
39

and z∗ = 3
13

.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.18)

Note that all these equations (3.16)–(3.18) contain a constant solution z∗ = 3/13 for the fraction
of defectors.

Now we assess the influence of σ1 in the eco-evolutionary dynamics of the proposed system
(2.10). We set the values of the parameters σ2 = 1.00, σ3 = 0.70, β = 1.20, δ = 0.30, ξ = 0.70, η = 0.1
and p = 0.1 to draw figure 8. This set of parametric values are the same as chosen in figure 6, where
we plot the bifurcation diagram with respect to p with σ1 = 0.55. We have already mentioned that
the overall dynamics in figure 6 remains within [0, 1] only for p ≥ 0.4. So the choice of p = 0.1 in
figure 8 may reveal many exciting outcomes. Since σ2 > ξ , thus the extinction stationary point E0
is unstable for our choice of parametric values. Hence, the relation (3.15) is well defined here too.

We vary σ1 ∈ (0, 1] to understand the importance of free space-induced benefits towards
C. Here, we cannot trace numerically any bounded attractor for σ1 ∈ (0, 0.49]. The bifurcation
diagrams are drawn for 1.2 × 106 iterations with fixed initial condition (0.3, 0.3, 0.3). In fact, for
σ1 → 0.49, one can obtain an attractor which initially behaves chaotically for a possibly sufficiently
long run, and finally, it will diverge leaving the signature of the transient chaos [109]. We choose
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a value of σ1 = 0.515, and run the system (2.10) for a massive number of iterations (1.5 × 107). The
system exhibits chaotic dynamics, as shown in figure 8d–f. This dynamical behaviour changes
through the period-halving bifurcation. Finally, the system converges to the stationary point
E7 = (x∗, y∗, z∗), giving an opportunity for coexistence of each subpopulation. Here,

x∗ = 17σ1 − 26
195(σ1 − 1)

,

y∗ = 266σ1 − 221
390(σ1 − 1)

and z∗ = 3
13

.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.19)

This stationary point E7 changes its stability beyond a critical value of σ1, and then the system
settles down to the punisher-free stationary point E6 = (γ1, 0, γ2), where

γ1 = 39(10σ1 − 7)
10(64σ1 − 39)

and γ2 = 5(10σ1 − 7)
2(64σ1 − 39)

.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.20)

In the entire stationary state E7 regime, we expect a growth of the fraction of cooperators, as
larger σ1 facilitates the increase of 〈x〉 (red) through the selfless contribution of free space towards
the cooperators. This fact is contemplated through figure 8a. Simultaneously the relative fraction
of punishers 〈y〉 (magenta) is declining in figure 8b, and the relative fraction of defectors 〈z〉 (blue)
is rising in figure 8c. We also plot the unstable position (black dashed lines) of the punisher-free
stationary point E6 using equation (3.20). During the appearance of E6, 〈x〉, 〈y〉 and 〈z〉 reduce
to 39/64, 0 and 25/64, respectively. Clearly, it indicates the dominance of C over D and P. We
observe this unstable stationary point E6 (black dashed line) coincides with the chaotic attractor,
and consequently, the orbit will diverge. This boundary crisis through the variation of σ1 leads
to the destruction of a strange attractor within the interval σ1 ∈ (0, 0.49]. One should note that
the system dynamics provides overcrowded solutions for σ1 < 0.647. Thus, the chaotic time series
in figure 8d–f signifies the overcrowded solution with x + y + z > 1. Nevertheless, we acquire the
physically meaningful solution of the system (2.10) from the perspective of the evolutionary game
theory for σ1 ∈ [0.647, 1]. This interval contains solutions of different characteristics, including
periodic behaviour and stationary states (E6 and E7).

(e) A particular case withσ1 = σ2 = σ3 = σ

Until now, we have investigated the system (2.10) with different sets of parametric values. But
what if free space contributes the same amount of offering towards each of the subpopulations?
To explore this inquiry, we take into consideration the relation σ1 = σ2 = σ3 = σ > 0. Hence, the
system (2.10) transforms to the following set of nonlinear equations:

ẋ = x[(1 − σ )x + (1 − σ )y − σz + (σ − ξ )],

ẏ = y[(1 − σ )x + (1 − σ )y − (σ + δ)z + (σ − ξ )]

and ż = z[(β − σ )x + (β − δ − σ )y + (2pη − η − σ )z + (σ − ξ )].

⎫⎪⎪⎬
⎪⎪⎭

(3.21)

Here, 0 < η < 1, 0 ≤ p ≤ 1, β > 1 and δ, ξ , σ > 0.
We perform a detailed analysis of this model (3.21), which is provided in table 2. Table 2

consists of three columns. The first column demonstrates different stationary points. The second
column indicates the criteria for which each component of x, y and z along with the overall
dynamics x + y + z lies in [0, 1]. The eigenvalues of the Jacobian corresponding to each stationary
point are explicitly calculated in the third column of table 2. The strictly negative real part of
eigenvalues can address the stability of stationary points of the nonlinear differential equations
(3.21).
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The computed eigenvalues can provide valuable insights into this model. For instance, the
stationary point E1 = ((ξ − σ )/(1 − σ ), 0, 0) with σ �= 1 has the following eigenvalues: λ1 = 0,
λ2 = ξ − σ and λ3 = (σ − ξ )(β − 1)/(σ − 1). Now if λ2 > 0, then this stationary point is unstable. If
λ2 < 0 then ξ < σ . Then the existence criteria reduces to only σ > ξ ≥ 1. Now since β − 1 > 0, thus
λ3 = (σ − ξ )(β − 1)/(σ − 1) is always positive. Hence in any circumstances, this stationary point
is unstable if it exists.

This model (3.21) can be solved analytically if two of the coordinates of the initial fraction of
the subpopulations (x0, y0, z0) are zero. The solution with initial conditions (x0, 0, 0) and x0 �= 0 is

x =
(σ − ξ )

(
1 + tanh

(
c1 + t

)(
(σ/2) − (ξ/2)

))
2(σ − 1)

, y = 0 and z = 0, (3.22)

where c1 is the initial condition-dependent constant. Similarly, we obtain the cooperator-free and
defector-free solution with the initial condition (0, y0, 0) and y0 �= 0 as

x = 0, y =
(σ − ξ )

(
1 + tanh

(
c2 + t

)(
(σ/2) − (ξ/2)

))
2(σ − 1)

and z = 0, (3.23)

and the initial condition (0, 0, z0) with z0 �= 0 gives rise to the cooperator-free and punisher-free
solution

x = 0, y = 0 and z =
(σ − ξ )

(
1 + tanh

(
c3 + t

)(
(σ/2) − (ξ/2)

))
2(η + σ − 2ηp)

, (3.24)

where c2 and c3 are the initial condition-dependent constants.
One of the interesting findings is that this equally likely likelihood from free space leaves

off the possibility of the manifestation of the interior stationary point E7. This hindrance is also
supported by equation (3.2). By inserting the constraint σ1 = σ2 = σ3 = σ in z∗ of equation (3.2),
we derive z∗ = 0. Thus, it is impossible to obtain any interior stationary point with each of its
coordinates being non-zero. However, we reckon seven stationary points have at least one of its
coordinates being zero.

4. Concluding remarks
Competition among species for their existence and survivability [110–112] is a wicked problem
in society under the realm of Darwin’s theory of evolution. Besides, how cooperative behaviour
evolves is one of the 25 big questions [113] facing science. Self-interested individuals are always
interested in exploiting the cooperators leading to a challenging social dilemma for the persistence
and emergence of cooperative behaviours. To understand the prevalence of cooperation in such an
adverse scenario, we have formulated a mathematical model using the two paradigmatic games:
PD and SD. These two two-person games yield two distinct outcomes. The PD game does not
support cooperation, while the SD game supports stable coexistence of cooperative and non-
cooperative behaviour. We introduce a parameter p ∈ [0, 1], which indicates the probability of
playing the PD game. The SD game is played with the complementary probability (1 − p). We
further extend the binary strategies: cooperation and defection by introducing a third one, viz.
punishment. This punishing strategy helps to promote cooperation by reducing the earnings of
defectors with a fine δ > 0. However, these punishers are different from cooperators, as they have
to bear an identical amount of cost δ for their punishment activities. Thus, they do not receive
any additional benefits for promoting cooperation in competitive environments. In fact, they use
their own resources for punishing defectors to control their self-centred mentality. Besides such
inclusion of altruistic punishment in our evolutionary model (2.10), the free space is brought
into play as an ecological variable. Free space selflessly provides replication opportunities to
each subpopulation without any expectations. Instead of this charity, free space never claims any
reciprocity. This one-sided contribution of free space without any self-benefit is brought into the
limelight by introducing the variable w, and three different parameters σ1, σ2 and σ3. All these
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factors lead to fascinating outcomes in the evolutionary multi-game, which may provide valuable
insights for understanding the evolution of cooperation in social systems.

We explain the results from the context of evolutionary game theory by applying the constraint
0 ≤ x + y + z ≤ 1 so that the overall population dynamics presents physically meaningful
inference. However, by doing this, we lose some captivating dynamics of our proposed model
(2.10). Hence, we show some overcrowded solutions (x + y + z > 1) and explain those results
using the well-known theories of nonlinear dynamics. These overcrowded solutions help us to
illustrate why the solution diverges for some suitable set of parameters through the boundary
crisis. Also, we can detect some parametric values for which the attractor exhibits a chaotic
signature with x + y + z > 1. But our primary motivation is to explain the obtained results
from the perspective of evolutionary game theory. Our proposed model can offer novel and
meaningful conclusions on the evolution of various subpopulations with x + y + z ∈ [0, 1]. The
model possesses eight different stationary points revealing several survivability and extinction
possibilities. Although the interior stationary point does not exist, if free space decides to provide
the same amount of benefits for all subpopulations. Insightful results can be captured using
the appearance of the periodic attractor. The spontaneous emergence of oscillation describes
the cyclic dominance sustaining the coexistence of three strategies under a suitable choice of
parametric values. Our model has certain limitations, as our model yet cannot capture several
real-life complexities. Our model contains eight different parameters impeding the exploration
and analysis of the proposed model. Moreover, the system is multi-stable, displaying the sensitive
dependence of the eco-evolutionary dynamics on initial fractions of subpopulations. These
hindrances point out a more intensive investigation of the eco-evolutionary dynamics of the
model proposed here. Still, we can contemplate the influence of each parameter through various
numerical studies and interpret those results using the context of evolutionary game dynamics.
We also validate our findings using analytical arguments. Mutation is one of the omnipresent
phenomena in biology and eco-evolutionary dynamics. The evolutionary dynamics of multi-
game are relatively ignored in most of the earlier studies on mutation [114–118]. Our results
may reveal exciting findings on the inclusion of mutations. Analysing such replicator-mutator
equations remains an important direction of future generalization, which is where our approach
might unveil an even broader spectrum of attractive dynamical states. We conclude with the hope
that instead of the complexity of the mathematical model, the evolutionary dynamics in different
subpopulations may find diverse applicability well beyond the context studied here and will
motivate some feasible scope of future research.
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