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Simplicial complexes describe the simple fact that
in social networks a link can connect more than
two individuals. As we show here, this has far-
reaching consequences for epidemic spreading, in
particular in the context of a multilayer network
model, where one layer is a virtual social network and
the other one is a physical contact network. The social
network layer is responsible for the transmission of
information via pairwise or higher order 2-simplex
interactions among individuals, while the physical
layer is responsible for the epidemic spreading. We
use the microscopic Markov chain approach to derive
the probability transition equations and to determine
epidemic outbreak thresholds. We further support
these results with Monte Carlo simulations, which
are in good agreement, thus confirming the analytical
tractability of the proposed model. We find that
information transmission rates are frequently low
when actual disease transmission rates in the physical
network are low or medium, and we show that this
can be mitigated effectively by introducing 2-simplex
interactions in the social network. The relative ease of
introducing higher-order interactions in virtual social
networks means that this could be exploited to inhibit
epidemic outbreaks.
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1. Introduction
Over the past two decades, real-world systems are often modelled as complex networks [1–
4], where nodes denote entities within the systems, and links represent the interactions among
them. Most recently, many complex systems have been described by multiple interdependent
networks or multilayer networks [5–16]. As a typical example, there exists an intricate interplay
between the power system and communication network [6], where, on the one hand, the basic
function of the communication system requires a proper power supply from the electrical system
to keep its running; on the other hand, only when the communication system is working
properly can the electricity generated by the power system be transferred continuously to the
places where it is needed. Similar interdependent networks include transportation systems, social
networks, ecosystems and so on [11,12]. Meanwhile, the dynamics taking place on interdependent
or multilayer networks receive a great deal of concern, especially for the epidemic spreading
behaviour on multilayer networks [17–22]. For instance, Granell et al. [20] proposed a two-layered
network model, in which the upper one is a virtual contact layer, used to describe information
propagation, and nodes in this layer have two possible states: aware (A) or unaware (U); while
the lower one is used to depict the physical contact layer, where disease contagion takes place,
and nodes in this layer have two possible states: susceptible (S) or infectious (I). It was clearly
found that the network structure and awareness diffusion can make an impact on the outbreak
threshold of infectious diseases. Also, information transmission of infectious diseases is helpful
to suppress its spreading, reduce its incidence and even contribute to its eradication [20–23].

However, regarding the propagation of information or behaviour on networks, previous works
have essentially been investigated on the basis of pairwise interactions, which neglect high-
order or non-pairwise interactions among nodes. In fact, from human communication [24–28]
to animals’ brains [29–31] and ecosystems [32–34], interactions may often occur among clusters
of three or more nodes, which cannot be described simply by the pairwise interactions between
two nodes [23,35–50]. As an example, Iacopini et al. [27] adopted random simplicial complexes to
construct single-layer networks that simulate the epidemic spreading among individuals. Based
on the mean field approach, they found that their new method can capture the underlying
mechanism and effect of higher-order topology during social contagion, and a bi-stable state of
infective density was discovered, which is related to the initial density of infectious individuals.
By studying the gaming behaviour on the uniform hypergraph, [28] found that the presence of
hubs and their interaction with groups of different sizes will affect the evolution of cooperation.
By introducing high-order structures in graph theory, such as clusters and holes, into the neural
network models of the human brain, [30] found that clusters and holes in the cerebral cortex play
an important role in human perspective and cognitive function. They also discovered that holes
are closely related to the patterns of information transmission in the brain. In addition, [33] found
that high-order interactions of species determine the diversity of natural ecosystems.

In order to further reveal some new phenomena that may arise from the introduction
of random simplicial complexes for the information transmission coupled with epidemic
propagation, we propose a new two-layer model to explore the impact of high-order interactions
in information diffusion on disease spreading. Here, the upper layer represents the virtual
layer, which is used to denote information diffusion among individuals, and random simplicial
complexes are used to construct the corresponding network [27]. The lower network stands for
the physical layer, which is adopted to depict the epidemic spreading among people, and the
Erdös–Rényi (ER) random graph [51] is used to create its topology. It is found through extensive
simulations that, at the steady state, the densities of infectious nodes obtained through the
microscopic Markov chain (MMC) approach closely agree with ones obtained through Monte
Carlo (MC) simulations, and the density of infectious individuals decreases as the information
transmission rate from 2-simplex increases. It is also discovered that random simplicial complexes
can affect the outbreak threshold of the disease, which demonstrates that the network constructed
with random simplicial complexes in the upper layer has a potential impact on the contagion
dynamics of the entire system.
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0-simplex 1-simplex

2-simplex 3-simplex

Figure 1. Illustrative examples of the 0, 1, 2 and 3-simplex. The 2-simplex includes not only the tree nodes and tree edges, but
also the whole area they surround. Similarly, the 3-simplex includes the four nodes, six edges and the three-dimensional space
they surround. (Online version in colour.)

The remaining sections are organized as follows. In §2, we firstly introduce the two-layer
network model and use MMC approach to derive the probability transition equations to analyse
the outbreak threshold of the epidemics. Then, §3 presents the numerical simulations obtained
by MC simulations and analytical results from MMC, respectively. Lastly, we end the paper with
some concluding remarks in §4.

2. Methods and models

(a) Simplicial complex
Before introducing our model, let us recall some basic concepts about simplicial complexes. A
k-simplex s is a convex polytope that consists of k + 1 vertices. For a given set of vertices V, with
|V| = N, a simplicial complex K is a collection of simplices, which means that if simplex s ∈ K,
then all the subsimplices ν ⊂ s built from s are also contained in K. In general, we call nodes as 0-
simplices, links as 1-simplices. One 2-simplex is a ‘full’ triangle composed of not only three nodes
and three links, but also the whole area they surround. One 3-simplex is the tetrahedral, and so
on. Several typical simplices are shown in figure 1.

(b) Two-layer network model
In this paper, a two-layer network model is used to characterize the coupling propagation
between epidemics and related information. On the one hand, the upper layer depicts the
information spread on social networks, such as Facebook, Twitter, WeChat and other social
platforms. However, unlike previous works, the upper layer network in this paper is constructed
with random simplicial complexes; that is, not only the information propagation of pairwise
interactions is considered, but the additional information contagion that may be caused by
simplicial complexes is also pondered.

On the other hand, the lower layer denotes the epidemic spreading behaviour within the real-
world social networks, and the classical SIS model is used to describe the epidemic spreading
processes in the lower layer, in which nodes may be in two possible states: infectious (I) or
susceptible (S). In the model, at each time step, S state nodes are infected by infective neighbours
and become I state with the probability β. Meanwhile, the infectious nodes recover and switch
into S state with probability μ.

Each node in the upper network is just mapped onto one node in the lower network, which
means that every node in the network will be influenced by both information and infectious
diseases. At the same time, it is assumed that the whole network is undirected and unweighted,
as shown in figure 2.

In the upper layer, nodes may be in two distinct states: unaware (U) or aware (A) of the
epidemics. At each time step, information propagation is divided into two stages: the first
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Figure 2. The proposed two-layer transmission model in this paper, in which the upper layer simulates the spread of
information about the disease, while the lower layer describes the epidemic propagation. The dotted lines between upper and
lower layers mean that nodes are matched one by one. Meanwhile, the network is undirected and unweighted. (Online version
in colour.)

one is to propagate news or information related with the disease through direct links, within
which unaware nodes receive information from aware neighbouring nodes and become aware
with probability λ. Aware nodes may lose the related information and become unaware with
probability δ. The second stage represents the effect of simplicial complexes (only the impact of
2-simplex is considered here), for example, three nodes i, j, k form 2-simplex, if nodes k and j are
in A state and node i is in U state, then node i will be again infected by the rate λ∗ through 2-
simplex. Thus, U state nodes may become A through the pairwise or 2-simplex interactions with
their neighbours, which are shown in figure 3.

Among them, aware nodes may take protective measures to reduce their risk of being infected
since they are aware of the spreading of epidemics, while the unaware nodes would not take any
protective measures when confronted with epidemics. Using βA to represent the probability of
aware nodes being infected and βU to denote the probability of unaware nodes being infected,
it is hypothesized that βA = γβU, where 0 ≤ γ ≤ 1 means that the probability for A nodes to be
infected is lower than that of the U node. In particular, if γ = 0, it means that nodes in the A
state will not be infected once they are aware. After individuals in the physical layer are infected,
they will be self-aware with the probability 1 and their corresponding state on the virtual layer
will spontaneously switch to A. Taking together, the individual states on two layers will be
combined and classified as three classes: AI, AS and US. Note that the UI state is absent since
the infectious individuals will be assumed to immediately become aware of the information of
infectious diseases and spontaneously become AI.

It is notable that the upper layer network in the proposed model is constructed with
2-simplicial complexes [27], which can be divided into the following three steps:

(i) Initialize the number of nodes in the network to be N. Let k1 denote the average degree
of nodes in the upper network, k2 be the amount of 2-simplices within which each node
may locate.

(ii) Generate an ER-random network with the linking probability p1 (0 < p1 < 1), which
means the probability of any two nodes to be connected within the network. Then, the
average degree of nodes in the network is (N − 1)p1 at this time.

(iii) Let p2 (0 < p2 < 1) stand for the probability of forming a 2-simplex through any three
nodes i, j, k. After generating 2-simplices for all nodes in the network with the probability
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Figure 3. Panels (a)–(f ) denote different cases that U state node imay be notified by its A state neighbour nodes. Panel (a) is
a 1-simplex (link) and node i is connected to an A state node, so node imay be notified to become A state withλ probability at
each time step. In panel (b), node i is connected to two A state nodes. Panel (d) denotes three 1-simplices, and since they do not
form a 2-simplex (missing the face of the triangular enclosure), each edge connected to node i denotes node imay be notified
to become A state at each time stepwith probabilityλ. In panel (e), they form a 2-simplex, but there is only one node in A state,
which does not meet the information dissemination conditions of the 2-simplex. Panel (f ) denotes a 2-simplex, at each time
step, node i not only notified by each A state node and become A state with probability λ, but also may become A state with
probability λ∗ under the influence of the whole 2-simplex. In addition, nodes in A state may become U state with probability
δ for loss of information at each time step, which is shown in panel (g). (Online version in colour.)

p2, the newly generated edges will be added into the ER-random network obtained in the
second step. Thus, k2 = (N − 1)(N − 2)p2/2.

It needs to be noted that the average degree of the nodes of ER-random network generated at
step (ii) will be expanded at step (iii), and thus the increases in the average degree caused by the
2-simplex need to be analysed in detail.

Firstly, supposing that there is no edge between i and j, i and k, it happens with the probability
(1 − p1)2. After linking i and j, i and k, the average degree of nodes in the ER-random network
generated at step (ii) will be increased by 2. Secondly, assuming that there is no edge between i
and j, but there is an edge between i and k. This situation happens with probability (1 − p1)p1.
After linking i and j, the average degree of nodes in the ER-random network will be increased by
1. Lastly, if there is no edge between i and k, but there is an edge between i and j, the variation of
the average degree is similar to that in the second case.

Summing up, 2(1 − p1)2 + (1 − p1)p1 + (1 − p1)p1 = 2(1 − p1) will be added into the average
degree of nodes in the ER-random network by a 2-simplex. Then, k1 = (N − 1)p1 + 2(1 − p1)k2. By
using the algebraic equivalence transformation, p1 and p2 can be calculated as follows:

p1 = k1 − 2k2

(N − 1) − 2k2

and p2 = 2k2

(N − 1)(N − 2)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.1)
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(c) Analytical results based on the MMC approach
Let [aij] and [bij] denote the adjacency matrices of the upper and lower layer networks,
respectively. pAI

i (t), pAS
i (t) and pUS

i (t) mean the probabilities of node i being at the state of AI,
AS and US at time t, respectively. Meanwhile, qA

i (t) represents the probability of node i not being
infected by any neighbour if node i is aware at time t, and qU

i (t) is used to denote the probability
of node i not being infected by any neighbour at time t if i is unaware. ri(t) is assumed to be the
probability of node i not being informed by any neighbour at time t which can be calculated by
multiplying r1

i (t) and r2
i (t). Here, r1

i (t) denotes the probability that node i is not informed by the
pairwise interaction of its neighbours at time t, and r2

i (t) stands for the probability that node i is not
informed by the 2-simplex interaction of its neighbours at time t. According to the aforementioned
definitions and assumptions, the above quantities can be computed as follows:

qA
i (t) =

∏
j

(1 − bjip
AI
j (t)βA),

qU
i (t) =

∏
j

(1 − bjip
AI
j (t)βU),

r1
i (t) =

∏
j

(1 − ajip
A
j (t)λ),

r2
i (t) =

∏
ci

(1 − cijkpA
j (t)pA

k (t)λ∗)

and ri(t) = r1
i (t)r2

i (t),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.2)

where pA
j = pAI

j + pAS
j . In the expression of r2

i (t), ci indicates the number of 2-simplices around
node i, cijk means whether these three nodes form a 2-simplex, and λ∗ denotes the information
transmission rate of the 2-simplex where node i is located, which can be further calculated by the
following equation:

λ∗ = δλδ

k2
, (2.3)

where λδ is the rescaled transmission parameter. Then, using equations above and the transition
probability trees of each state shown in figure 4, the transition probabilities of all possible states
in the proposed model can be obtained, which is shown in equation (2.4),

pAI
i (t + 1) = pAS

i (t)[δ(1 − qU
i (t)) + (1 − δ)(1 − qA

i (t))] + pAI
i (t)(1 − μ)

+ pUS
i (t)[(1 − ri(t)(1 − qA

i (t)) + ri(t)(1 − qU
i (t)])

pUS
i (t + 1) = pAS

i (t)δqU
i (t) + pAI

i (t)δμ + pUS
i (t)ri(t)q

U
i (t)

and pAS
i (t + 1) = pAS

i (t)(1 − δ)qA
i (t) + pAI

i (t)(1 − δ)μ + pUS
i (t)(1 − ri(t)q

A
i (t))

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.4)

As t → ∞, the transmission of information and disease in the model will tend to be steady, and
we can obtain the following steady-state equations:

pAI
i (t + 1) = pAI

i (t) = pAI
i ,

pAS
i (t + 1) = pAS

i (t) = pAS
i

and pUS
i (t + 1) = pUS

i (t) = pUS
i .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.5)

As is well known, in the classical SIS epidemic model, if β > βc, the contagion will diffuse
broadly among individuals for a long time. Otherwise, the disease will disappear soon. Therefore,
the density of infectious individuals at the steady state is close to 0 when β is near βc, and it is
often assumed that pAI

i = εi � 1 as t → ∞. By simplifying qA
i (t) and qU

i (t) in equation (2.2), their
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d

Figure 4. Transition probability trees for four states (AS, AI, US, UI). Individuals aware of epidemics will not be infected with
probability qAi (t), and individuals not aware of epidemics will not be infected with probability q

U
i (t). ri(t) is used to denote the

probability that an individual will not be informed by any neighbours who are aware of epidemics. δmeans the probability that
individuals aware of the information of epidemics may forget, andμ is the probability that infectious individuals may recover.
It is assumed that the infectious individuals will become aware of epidemics spontaneously and become AI and thusUI is bound
to become AI in the model.

values at the steady state can be calculated as follows:

qA
i ≈ 1 − βA

∑
j

bjiεj

and qU
i ≈ 1 − βU

∑
j

bjiεj

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.6)

Inserting this approximate equality into equation (2.4), the following equations can be derived:

pUS
i = pUS

i ri + pAS
i δ,

pAS
i = pUS

i (1 − ri) + pAS
i (1 − δ)

and μεi = (pAS
i βA + pUS

i βU)
∑

j

bjiεj.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.7)

Then, the third equation in equation (2.7) can be further simplified by its first two equations as
follows: ∑

j

[(1 − (1 − γ )pA
i )bji − μ

βU δji]εj = 0, (2.8)

where δij is the element of the identity matrix. Noting that the solution to equation (2.8) is an
eigenvalue problem for the matrix H whose elements are hji = (1 − (1 − γ )pA

i )bji. Then, the critical
threshold of the proposed model can be obtained as follows:

βU
c = μ

Λmax(H)
, (2.9)

where Λmax(H) is used to denote the maximum eigenvalue of matrix H. Henceforth, it is
concluded that, according to equations (2.8) and (2.9), the epidemic threshold is related to the
information diffusion in the upper virtual layer, especially to pA

i . Furthermore, the topological
structure of the lower physical layer, the values of μ and γ are also associated with the critical
threshold of the epidemic model.

3. Monte Carlo simulation results
Firstly, ρI and ρA are depicted as a function of β in figures 5, 6 and 7, in which ρI is used to denote
the density of infectious individuals at the steady state in the lower layer, ρA is adopted to express
the density of individuals who are aware of the information about the disease at the steady state
in the upper layer. In all simulations, the total number of nodes in each layer is assumed to be
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Figure 5. Densities of infectious individuals (ρ I) and agents aware of epidemics (ρA) obtained by MMC approach and MC
simulations with the increase ofβ , in which the yellow triangle line shows results ofρ I(MMC) and the green inverted triangle
shows results of ρ I(MC). The red square line shows results of ρA(MMC) and the blue circle line shows results of ρA(MC). In
panels (a–c),γ = 0, whileγ = 0.3 in panels (d–f ), andγ is set to be 0.9 in panels (g–i). At the same time, in panels (a), (d)
and (g),λδ = 0, whileλδ is 0.6 in panels (b), (e) and (h), andλδ is set to be 2.4 in panels (c), (f ) and (i). All the results of MC
simulations are averaged over 50 independent runs andλ= 0.1.β is ranged from 0 to 1 with the step length of 0.02 including
0 and 1. (Online version in colour.)

N = 1000. All the upper networks are constructed by using random simplicial complexes [27],
while all the lower networks are generated by the ER model [51], in which the probability of
connection between any two nodes is 0.006. In addition, the initial value of ρI is equal to 1%, and
other parameters are initialized to be δ = 0.8, μ = 0.4, γ = 0, k1 = 10, k2 = 2. According to equation
(2.3), when λδ = 0, λ∗ = 0, when λδ = 0.6, λ∗ ≈ 0.2276, when λδ = 2.4, λ∗ ≈ 0.9104. The relative
error of results obtained by MMC approach and MC simulations for infectious individuals with
a group of parameters, such as λ, β, γ and so on, is calculated by (|ρI

MMC − ρI
MC|/ρI

MC). By
adding all the relative errors of k different groups of parameters and dividing it by k, the relative
error of these k groups of parameters is derived. The relative errors for ρA are calculated in a
similar way. Parameters and methods used in the following experiments are consistent with the
above-mentioned ones if not specifically stated.

When the information transmission rate is set to be 0.1, the densities of aware individuals and
infectious individuals at the steady state obtained by the MMC approach and MC simulations are
shown in figure 5. In panel (b), the relative errors of ρI obtained by the MMC approach and MC
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Figure 6. Density of infectious individuals (ρ I) obtained by the MMC approach as a function of the disease transmission rate
(β) at the steady state for differentλδ andγ . In panel (a),λδ = 0, the information transmission rate of 2-simplex (λ∗) is 0. In
panel (b),λδ =0.6,λ∗ ≈ 0.23. In panel (c),λδ = 2.4,λ∗ ≈ 0.91. The information transmission rate (λ) is 0.1 andβ is ranged
from 0 to 1 with the step length of 0.02 including 0 and 1. The loss rate of information (δ) is assumed to be 0.8. The recovery rate
of disease (μ) is 0.4, k1 = 10, k2 = 2, N = 1000. The upper network is constructed with random simplicial complexes and the
lower network is generated by the ER model. The red squares denoteρ I with γ = 0, which means individuals who are aware
of the disease cannot be infected. The blue circles and yellow triangles stand forρ I withγ = 0.3 and 0.9, respectively. (Online
version in colour.)
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Figure 7. Density of infectious individuals (ρ I) obtained by MMC approach as a function of the disease transmission rate (β)
at the steady state in different λδ and γ . In panel (a), γ = 0, which means individuals who are aware of the disease cannot
be infected directly. In panel (b), γ = 0.3. In panel (c), γ = 0.9. The information transmission rate (λ) is 0.1 andβ is ranged
from 0 to 1 with the step length of 0.02 including 0 and 1. The loss rate of information (δ) is 0.8. The recovery rate of disease (μ)
is 0.4, k1 = 10, k2 = 2, N = 1000. The upper network is constructed with random simplicial complexes and the lower network
is generated by ERmodel. The red squares representρ I withλδ = 0,λ∗ = 0, whichmeans the information transmission rate
of 2-simplex is 0. The blue circles and yellow triangles denoteρ I withλδ = 0.6 (λ∗ ≈ 0.23) and 2.4(λ∗ ≈ 0.91), respectively.
(Online version in colour.)

simulations are around 5.83%, and they are around 4.32% in panel (c). In all the other panels of
figure 5, the relative errors of ρI and ρA obtained by the MMC approach and MC simulations are
around 2%. In panels (a), (d) and (g), λδ = 0, λ∗ = 0, at this time, the upper layer network is not
affected by the 2-simplex, and information can only be propagated by the pairwise interaction
among nodes. Overall, it is discovered that the relative errors are very small for different λδ , and
the error is mainly generated around the threshold critical point. When β > βc, the epidemics
will tend to be endemic, and hence the density of infectious individuals will climb up quickly.
However, the epidemics will quickly become extinct when β < βc. Taken together, when the
information transmission rate is set to be 0.1, the results obtained by the MMC approach well
agree with these obtained by MC simulations, which demonstrates that the proposed model can
be predicted accurately.
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Figure 8. Densities of infectious individuals (ρ I) as a function of β and λ at the steady state by MMC approach and MC
simulations. Panels (a–c) are results obtained by the MMC approach. Panels (d–f ) are results obtained by MC simulations.
In panels (a) and (d), λδ = 0. In panels (b,e), λδ = 0.6. In panels (c,f ), λδ = 2.4. γ = 0. All results of MC simulations are
obtained by averaging 50 independent runs. The colours of each panel mean the density of ρ I for each point within a grid of
50∗50. (Online version in colour.)

To reveal the influence of different γ and λδ , the densities of infectious individuals obtained
by the MMC approach are pictured in figures 6 and 7. It is discovered that ρI increases as γ

increases. When 1 > γ > 0, it means some of susceptible individuals who are aware of the disease
would not take measures to reduce their risk of being infected, or the measures they take are not
able to protect them from the disease effectively, which leads to the situation where the density of
infectious individuals arises eventually. At the same time, it is found that the effect of λδ is limited
when γ > 0, especially for the case under γ = 0.9 (figure 7c).

In order to further investigate the impact of λ and β, the results obtained by the MMC approach
and MC simulations are pictured in figure 8. In panels (a,d), λδ = 0, λ∗ = 0 and the relative error is
around 6.56%; in panels (b,e), λδ = 0.6, λ∗ ≈ 0.2276, and the relative error is about 6.11%; in panels
(c,f ), λδ = 2.4, λ∗ ≈ 0.9104, and the relative error is only 6.91%. All these results indicate that the
relative errors between the MMC approach and MC simulations are small enough. In particular,
it is also found that, when λ is small (0 < λ < 0.3) and β (0.4 < β < 1) is large, ρI decreases as λδ

increases, especially when λδ = 2.4, ρI is the smallest one. When β is larger and λ is smaller, the
infectious disease spreads widely throughout the network, but the spread of information is weak.
Increasing λδ can increase λ∗ and promote the spread of information on the 2-simplex, which in
turn drives the diffusion of information related to the infectious disease throughout the upper
network, then corresponding nodes take certain measures to reduce their risk of being infected,
and thus the overall density of infectious individuals will decrease. This phenomenon implies
that increasing λδ can inhibit the spread of infectious diseases when β is larger and λ is smaller.
But when λ is larger (λ > 0.3), the density of infectious nodes would not decrease as λδ increases,
since the whole network has reached the stable state at this time, and neither increasing λ nor λδ

can reduce the density of infectious nodes.
Henceforth, it is discovered that λ and λδ can interact with each other and commonly influence

the propagation of information in the network. In particular, the effect of information diffusion
rate of 2-simplex becomes more obvious when β is large and λ is small.
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Figure 9. Densities of infectious individuals (ρ I) and people aware of disease (ρA) as a function ofβ andλ at the steady state
by MMC approach. Panels (a–c) are densities of infectious individuals. Panels (d–f ) denote the densities of agents aware of
disease. In panels (a) and (d), λδ = 0. While, in panels (b,e), λδ = 0.6. In panels (c,f ), λδ = 2.4. γ = 0. All results of MC
simulations are attained by averaging 50 independent realizations. The colours of each panel mean the density for each point
within a grid of 50∗50. (Online version in colour.)

The density of infectious individuals (ρI) and density of agents aware of disease (ρA) at the
steady state obtained by the MMC approach are illustrated in figure 9. By observing panels (d–f ), it
is discovered that ρA gradually increases with the increase of λδ in the region where β is larger and
λ is smaller, while it tends to be stable when λ is larger. This coincides with the previously drawn
conclusion since the propagation of information on the 2-simplex will be promoted by increasing
λδ when β is large and λ is small. The propagation of information in the upper network would be
facilitated in turn. Therefore, the density of agents aware of disease increases. When λ is larger, the
density of individuals in the whole network that know the information of infectious diseases has
reached the saturation, and there is no effect even if λδ is increased further. By observing panels
(a–c), it can be found that ρI gradually decreases with the increase of λδ in the region where β

is larger and λ is smaller. It has been assumed that the UI state is directly transformed to the AI
state and AS state nodes cannot be directly infected, so the total number of nodes in the AI state
is equal to the total number of nodes in the I state, while the total number of nodes in the A state
is equal to the total number of nodes in the AI state plus the total number of nodes in the AS
state. It is also concluded that, by increasing λδ , when β is larger and λ is smaller, the density of
AI state nodes decreases but the density of A state nodes increases, which means that the number
of AS state nodes in panels (b,f ) gradually accumulates, and the role of 2-simplex in promoting
information dissemination is demonstrated, confirming the results obtained earlier again.

The critical threshold obtained by this model is shown in detail in figure 10. In panel (a), when
γ = 0, it is shown that the epidemic threshold increases as λδ increases when 0.05 < λ < 0.4, and it
would not be increased by increasing λδ when λ ≥ 0.4. In panel (b), when γ = 0.3, the thresholds
of different λδ are definitely smaller than these of γ = 0 when 0.05 < λ < 0.4. It is apparent that
increasing λδ , which increases the propagation of information on 2-simplex, can increase the
threshold to some extent and make the outbreak of infectious diseases more difficult. But the
effect of λδ decreases as γ increases, which demonstrates the inhibitory effect of λδ on epidemic
propagation is limited.
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Figure 10. Epidemic threshold (βc) obtained by the MMC approach as a function of the information transmission rate (λ) in
differentλδ andγ .λ takes the values from0 to 0.4with the step length of 0.01 including 0 and 0.4. In panel (a),γ is set to be 0,
whichmeans people aware of the epidemicwould not be infected. In panel (b),γ is set to be 0.3. The loss rate of information (δ)
is assumed to be 0.8. The recovery rate of disease (μ) is 0.4, k1 = 10, k2 = 2, N = 1000. The upper network is constructed with
random simplicial complexes and the lower network is generated by ER model. The red squares denote βc with λδ = 0 and
λ∗ = 0, which means the information transmission rate of 2-simplex is 0. The blue circles and yellow upper triangles indicate
βc withλδ = 0.6(λ∗ ≈ 0.23) and 1.2(λ∗ ≈ 0.46), respectively. The green lower triangles and grey squares stand forβc with
λδ = 1.8 (λ∗ ≈ 0.69) and 2.4(λ∗ ≈ 0.91), respectively. (Online version in colour.)

Therefore, increasing λδ can enlarge the epidemic threshold to some extent, especially for the
lower γ , and it affects the threshold by controlling the propagation of information in the 2-simplex
through λ∗. This interaction mechanism is similar to the impact of λ on the threshold and thus it
is an indirect effect.

4. Discussion
In summary, a new epidemic model on the two-layered network to illustrate the coupling spread
between epidemics and information is proposed in this paper, where the upper layer denotes
the virtual contact network constructed with random simplicial complexes and the lower layer
stands for the physical contact network. At first, the MMC approach is adopted to construct
probability transition equations to analyse the outbreak threshold of infectious diseases. Then,
the average densities of infectious individuals and those knowing the information of infectious
disease at steady state were obtained by multiple MC simulations. The results derived by the
MMC approach and MC simulations are found to be matched well after detailed comparisons,
indicating that this new model can be well predicted. The main results are as follows:

— 2-simplex provides the extra possibility for an individual to be informed, and thus the
information transmission on the information layer can be promoted by increasing the
information transmission rate, especially when the disease transmission rate is high and
the information transmission rate is low.

— Information transmission induced by the 2-simplex can further increase the threshold of
disease outbreak and suppress its outbreak to a certain extent, but this impact decreases
as γ increases.

Although concepts related to higher-order interactions have been proposed in mathematics
for a long time, studies associating them with complex network are still in their infancy. Thus,
exploring the impact of higher-order interactions on the dynamics on top of networks deserves
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much more attention. Specifically, in the area of coupling propagation between information
and epidemics, when the dissemination of information includes not only local information,
but also contact information and global information, corresponding networks constructed
with simplicial complexes or hypergraphs may induce the diverse phenomena. Meanwhile,
when information spreading is not limited to pairwise interaction, but extended to herd-like
contagion, the introduction of simplicial complexes or hypergraphs may also create some
unexpected phenomena. Meanwhile, in our opinion, integrating the higher-order interactions
with multilayer or interdependent networks may provide a potential means to illustrate the
relationship between the network structure and dynamics taking place upon them.

Taken together, the current results are highly enlightening, and the role of simplicial complexes
in the transmission of information or disease should be taken into account, which would help
public health authorities to better design effective measures to deal with possible future outbreaks
of epidemics or even pandemics.
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