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We emphasize that decision-making under uncertainty and imperfect information, and with only
conditionally optimal outcomes, is a unique forte of established game-theoretic modelling.
Therefore, we can use this approach to obtain the best framework for modelling and simulating
vaccination prioritization and uptake that will be readily available to inform important policy
decisions for the optimal control of the COVID-19 pandemic.
lishing.org/journal/rsos
R.Soc.Open

Sci.8:210429
1. Introduction
Vaccination is the main hope to contain the COVID-19 pandemic currently enveloping the world [1,2].
Several vaccines for SARS-CoV-2 have been developed or are under development, and their potential
impact and limitations are hotly debated. It is expected that herd immunity [3–6] will play a role in
containing the pandemic once a sufficiently high proportion of the world population gains adaptive
immunity. Nevertheless, if high morbidity, mortality and economic catastrophe are to be avoided, the
vast majority of the population should acquire immunity through vaccination rather than infection.
While global eradication of COVID-19 could be a difficult goal to achieve [7,8], a successful
vaccination programme may target regional elimination in the short to medium term. Hence,
vaccination uptake will have a direct and critical influence on the dynamics of the COVID-19
pandemic, and the ability of the healthcare systems to manage it.

In this position paper, we argue that the level of vaccination uptake in populations, the effective
prioritization of potential vaccine recipients and the efficient use of the resources needed by
vaccination administration programmes will be the key determinants in how the COVID-19 pandemic
is contained and/or eliminated in populations in the coming years. We posit that without widespread
uptake, any vaccination programme will fail regardless of the efficacy [9,10] of the vaccine itself.
Indeed, there is some evidence to suggest that higher efficacy of vaccines, which is desirable in itself,
decreases vaccination uptake by encouraging free-riding behaviour [11]. Therefore, what we describe
in this position paper are conditions under which the vaccination programmes can achieve their
maximum uptake and effectiveness, and the modelling and implementation approaches needed to
help the vaccination programmes achieve this.

We propose that game-theoretic modelling, which is the established theoretical framework for
modelling rational decision-making [12,13], coupled with social network analysis and agent-based
techniques for modelling the population and simulating the disease dynamics [4,14–18], will give us
the most effective toolset to model the vaccination uptake. This multi-faceted approach will produce a
definitive roadmap for the implementation of vaccination programmes which will lead to successful
long-term management of COVID-19.
1.1. Position statements
1.1 In the coming years, the most important factors that will determine the success of controlling the

COVID-19 pandemic will be the level of vaccination uptake by the population, and the effective
use of resources to administer the vaccine in highly varied and variable settings.

1.2 Game theory, supplemented by social network analysis and agent-based modelling, should be
extensively used by researchers to model vaccination uptake by populations and guide difficult
policy decisions regarding vaccination programmes and thus maximize containment of the
COVID-19 pandemic.

2.1 Given the limited availability of vaccines at the initial stages, effective prioritization and optimal use
of resources are crucial. If the vaccine is of the type which reduces the transmissibility of the SARS-
CoV-2 virus, prioritization should be based on targeting individuals, cities or states that can act as
critical nodes of transmission or superspreaders. Whereas if the vaccine is of the type that reduces
symptoms or mortality, prioritization should be based on targeting individuals, cities or states that
are likely to have poor outcomes if infected.

2.2 Game theory, together with social networks and agent-based modelling, can be used as a primary
theoretical framework in determining effective prioritization of scarce resources needed in different
vaccination programmes, depending on a broad range of bounding conditions for successful
implementation.
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2. Background
2.1. The current state of SARS-CoV-2 vaccine development and delivery
Effective SARS-CoV-2 vaccine development, production and dissemination are expected to take at least
12–18 months [19,20]. Efforts to develop vaccines have explored different approaches, ranging from
recombinant vaccines and nucleotide-based vaccines to subunit vaccines and others. Most vaccines
currently being administered are aimed at inducing neutralizing antibodies against the viral spike (S)
protein of SARS-CoV-2, which prevent binding to ACE2 receptors of host cells [2]. The leading
vaccines currently being administered are (i) the ChAdOx1 vaccine developed by the University of
Oxford and AstraZeneca, (ii) the Pfizer-BioNTech BNT162 vaccine, (iii) the Moderna RNA vaccine,
which is designed to induce antibodies against a portion of the coronavirus S protein, (iv) the
Sinopharm inactivated SARS-CoV-2 vaccine, (v) the Gameliya Research Institute Gam-COVID-Vac
Adeno-based vaccine, and (vi) Bharat Biotech whole-virion inactivated SARS-CoV-2 vaccine (BBV152).
Currently, WHO lists another 100 vaccine candidates as under investigation in human clinical trials
and 184 in preclinical trials [21]. Out of these, 19 vaccine candidates are in phase 3 clinical trials at
present, with 16 other candidates in phase 2 or phase 2/3.

The global collaborative effort, COVAX, has been initiated to negotiate and ensure equitable access of
SARS-CoV-2 vaccines to all participating countries regardless of income levels [22]. Several countries
have also made alternative arrangements for procuring approved vaccines directly from the
manufacturers. Nevertheless, despite unprecedented levels of accelerated research and international
cooperation, most countries are finding it difficult to procure sufficient doses to vaccinate their entire
populations, and may not get sufficient vaccine supplies to do so in the near future.
2.2. SARS-CoV-2 vaccination objectives and the role of herd immunity
Achieving herd immunity is often a key objective of population-level vaccination coverage. Herd
immunity [23] is a population threshold that marks the necessary proportion of the population that
needs to be immune to an infection, either through vaccination or through exposure to the pathogen,
so that the transmission of the infectious agent is sufficiently disrupted, and the entire population is
protected [3]. It is not desirable to expose a significant portion of the population to the pathogen in
order to acquire herd immunity. Rather, the objective should be to achieve herd immunity through
vaccination to minimize morbidity and mortality.

The level of herd immunity needed to protect a population can be derived from the basic
reproduction number (R0), which is defined as the number of secondary infections produced on
average by an infected index case within a completely susceptible population, assuming there is no
human intervention [4–6]. The epidemic threshold is defined as the inverse of the basic reproduction
number [5,6]. The level of herd immunity needed to protect a population from an epidemic is equal
to the complement of the epidemic threshold (i.e. herd immunity threshold = 1− 1/R0).

The basic reproduction number R0 for COVID-19 and the corresponding herd immunity threshold are
not yet known definitively, with current best estimates of R0 ranging from 2.5 to 3.0 [24–28], with the
corresponding herd immunity thresholds ranging from 60 to 67%. Furthermore, much uncertainty
remains regarding the nature of the immunogenicity of the pathogen, with important implications for
vaccines. It is currently unknown whether humoral or cell-mediated responses drive neutralizing
immunity or other correlates of protection, and how long any such protection endures [29–31]. If
vaccination does not generate protective immunity in every member of the population who gets
vaccinated, then the number of people requiring vaccination for the population to achieve herd
immunity will be higher than the number determined by the herd immunity threshold as defined
by R0. Similarly, waning vaccine-induced immunity will require greater population coverage than
that derived from R0, and also may necessitate the administration of booster vaccination.
Also, the targeting of epidemiologically influential subgroups will be important, and the relative
importance of some of these subgroups is disease-specific. For example, healthcare and other
essential workers may be important subgroups to target for SARS-CoV-2 vaccination due to their
relatively high levels of exposure. According to recent evidence [32,33], children also may be more
influential to transmission than previously assumed. Therefore, despite the transient immunogenicity
of SARS-CoV-2, targeted vaccination delivery may achieve herd immunity at or below the
threshold derived from R0 if epidemiologically influential subgroups are prioritized. All these
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aspects of herd immunity specific to COVID-19 will necessarily be foundational to the modelling of
SARS-CoV-2 vaccine effectiveness.

2.3. Game theory in vaccination uptake modelling
Game theory, which is the study of strategic decision-making by rational players, is used to study several
phenomena and behavioural patterns in human societies and socio-economical systems, and is applied in
fields ranging from evolutionary biology to computer science and project management [4,34–38]. Several
previous studies have modelled vaccination uptake using game theory in the context of diseases such as
influenza, measles, chickenpox and hepatitis [4]. When modelling vaccination uptake using game theory,
players usually represent individuals, and the actions involve taking or not taking a vaccine. The payoff is
decided by several factors including the perceived risk of infection (perceived prevalence and
transmissibility), severity of the disease, financial and non-financial cost of vaccination, and the
perceived uptake of vaccination by other players.

To reach a decision, individuals either try achieving utility maximization or comparing the payoffs of
two strategies. The decision-making process is modelled in two ways: (i) self-learning (Aspiration game)
[39] and (ii) social learning (Imitation game) [4,40]. Through self-learning, individuals rely on their
knowledge, memory and personal perception, and awareness of the disease, and switch strategies if
their own aspiration level is not met, while imitation dynamics put individuals into an environment
where personal decisions are influenced by the choices of the population, and individuals update
their strategies by comparing their own expected payoffs with others in the population and switch to
the strategy which gives the better payoff [39–41]. The imitation game can be played in a
homogeneous population structure representing a well-mixed population, or a heterogeneous
population structure, where the influence by neighbours is determined by the number and strength of
contacts between the individual and his/her neighbours [42,43]. Recent research has suggested that
imitation dynamics is typically insufficient to sustain herd immunity of a society in the long term [43].
3. Vaccination uptake as a key determinant of COVID-19 containment
success

3.1. Key drivers and barriers of vaccination programmes
Levine [44] describes six key drivers that may influence vaccine uptake. These include the epidemic
potential of the pathogen, localized transmission potential of the pathogen, safety concerns with the
vaccine, strength and flexibility of public health delivery systems, public investment in resources for
immunization, and local ownership and individual normative behaviours. The level of vaccine
hesitancy by the population [45], and the local context and its multifactorial determinants also need to
be considered.

Assuming that safe and effective SARS-CoV-2 vaccines will be available after timely regulatory
approvals, countries will still require enormous resources and systems in place to address vaccination
programme implementation challenges. The challenges in vaccination programme implementation
include vaccine procurement and supply chain management, developing and deploying vaccine
delivery platforms, developing vaccine delivery strategies including identification of eligible/target
subpopulations for vaccination, training of frontline workers and social mobilization [1]. These
barriers and challenges must also be viewed in the light of the shortages of health workers that exist
in many parts of the world. The High-Level Commission on Health, Employment and Economic
Growth of WHO [46] noted in 2016 that there was a global shortage of 180 million health workers to
meet the prescribed minimum threshold of 44.5 health workers per 10 000 individuals. Given these
pre-COVID-19 deficits, the optimal management of human resources to meet the increased demands
of the pandemic, manage the normal caseloads from other diseases and still allocate sufficient human
resources for the urgent task of vaccination will be a significant challenge to many countries.

3.2. Comparative significance of vaccination uptake
We posit that strategic vaccine delivery and its uptake comprise the most important determinants of
containing COVID-19 successfully, and compare favourably against considerations related to vaccine
efficacy. Vaccine efficacy is defined as the percentage reduction of disease in a vaccinated group of
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people compared to an unvaccinated group, using the most favourable conditions [9,10]. Modelling
suggests that a vaccine with partial efficacy may have a significant impact and cost-effectiveness with
maximal gains achieved with the earlier introduction [1]. Therefore, we argue that any vaccine
candidate which has met the minimum endpoints explicitly defined in their phase 3 protocols must be
deployed immediately, and the efficacy of such a vaccine, while important, is a concern secondary to
achieving strategically targeted coverage as early as possible.

Similarly, we argue that while non-pharmaceutical interventions (NPIs) will retain their significance
in containment efforts in the short to medium term, vaccination uptake will eventually supplant them as
the primary means to containing COVID-19. Several countries have used contact tracing and isolation
efforts, coupled with mask-wearing and social distancing measures, to contain COVID-19, as an
interim measure until mass vaccination programmes are successfully implemented [47]. When
implemented consistently, these efforts have enjoyed considerable success, but are also both highly
resource-intensive and socio-economically disruptive [47,48]. As such, they may be unsustainable over
the long term due to population fatigue, economic hardship and the lack of requisite public health
resource capital [49]. Therefore, while they are crucial to the containment of COVID-19 in the short
term, the importance of vaccination efforts will surpass them in significance in the long term.
pen
Sci.8:210429
4. Applying game theory in SARS-CoV-2 vaccination uptake modelling
4.1. Why game theory?
There are many compelling reasons why game theory should be employed in the modelling and analysis
of SARS-CoV-2 vaccine uptake. Firstly, compulsory vaccination is likely to encounter a level of resistance
from the public, and there may not be enough vaccines to vaccinate everyone. Therefore, decisions will
have to be made by governments and policymakers about who to vaccinate, and by individuals about
whether they want to take the vaccine. An individual is likely to get vaccinated only if the
policymakers decide to offer vaccination to that individual, and the individual decides to accept it.
Game theory can be used to explicitly model the decision-making of policymakers (vaccine givers)
and individuals (vaccine takers), because it has well-defined branches which model ‘public good’
decision-making (cooperative game theory) and selfish decision-making (non-cooperative game
theory) [12,37].

Secondly, game theory can also model the evolution of strategies. In the COVID-19 context, strategies
will evolve as more information becomes available about the disease itself and about the vaccines.
Different strategies will contest for primacy, and evolutionary game theory [50–52] can explicitly
model this.

Thirdly, game theory can explicitly account for ‘bounded rationality’—the limited ability of people to
assess reality. Thus, game theory can model the perceived and real payoffs of vaccination and distinguish
between them, which is important with respect to COVID-19 because of the amount of misinformation
and conspiracy theories present.

Finally, game theory can be used in conjunction with other tools, such as prospect theory [53], Monte
Carlo simulation [54] and agent-based models [55], which will be useful in modelling the COVID-19
dynamics, and computing and predicting epidemic parameters which can then be used as input to
model decision-making, completing the feedback loop. It can also employ supercomputing resources
in calculating equilibrium solutions [56,57].

4.2. Factors and parameters
A complex array of factors, parameters, drivers and attributes, which influence the decision by
individuals to take the vaccine, the decision by governments and policymakers to provide a vaccine to
certain people, or both, need to be considered in modelling SARS-CoV-2 vaccination uptake. The age
and gender distributions of people will influence vaccination uptake, since older people are more
likely to be adversely affected by COVID-19, and likely to have higher mortality rates [24,58], and
thus may have more incentive to take the vaccination. Similarly, some preliminary studies suggest that
[59,60] men compared to women are more likely to be symptomatic with COVID-19 or to have higher
morbidity, thus men may have comparatively more incentive to take vaccination. The cost and
accessibility of the vaccine will obviously influence the levels of uptake. In some countries,
governments may make the vaccination compulsory for certain demographics, such as people above a
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certain age, and this may reduce the incentive for others to vaccinate voluntarily. Vaccination cost may
influence uptake in a non-trivial manner, with some studies suggesting that hysteresis loops of
vaccination uptake levels may occur with respect to changes in the perceived vaccination cost as well
as the vaccine efficacy [61].

The type of vaccine will influence the uptake. We need to model scenarios where the vaccine will be
one-off, seasonal or a chemoprophylaxis. We also need to consider whether the vaccine will reduce
transmissibility or will reduce the severity of the symptoms and the mortality rate. If the vaccine will
reduce transmissibility, then relatively young people, who are more likely to travel and interact with
others, should be given preference by policymakers in vaccine access. On the other hand, if the
vaccine primarily reduces symptoms or mortality, then older people, and people who have illnesses
that increase the likelihood of a poor outcome, will have a higher incentive to take the vaccine, and
policymakers will have a higher incentive to give the vaccine to them. The type of vaccine may also
affect the evolution of pathogen virulence, and this is an important consideration in the context of
new and highly virulent strains of SARS-CoV-2 emerging recently. Some studies argue that vaccines
designed to reduce pathogen growth rate and/or toxicity may result in the evolution of more virulent
pathogens, thus diminishing the benefits of mass vaccination, while vaccines that reduce transmission
do not produce this effect [62,63]. The evolution of pathogen virulence affects the disease dynamics
which will in turn influence patterns of vaccine uptake.

Other influential factors are epidemiological metrics, such as COVID-19 incidence, prevalence and
cumulative incidence, and these need to be considered at suburb, city, state and country levels,
creating a complex array of parameters. Furthermore, the perceived epidemiological parameters and
perceived risks of vaccination [64] can differ from real parameters and real risks of vaccination if
misinformation is being spread, and this difference between perceived and real parameters can be
correlated to the ‘bounded rationality’ [13,65–67] of the potential vaccinees, or the level of ‘noise’
present in the information. All such context and nuance will need to be modelled.

The level of interaction a person expects to have with the community in general, and other SARS-
CoV-2-infected people in particular, will influence vaccination decisions, and will have to be
modelled. For example, a person who travels to work by train, or is employed in a people-facing job
such as teaching or food service work, may be more likely to vaccinate compared to a person working
from home. Similarly, health workers are more likely to vaccinate. The social structure or topology of
a person’s immediate neighbours also may influence vaccination decisions [68].

Other factors involve the health of the potential vaccinees. In particular, the perceived and real levels
of immunity of people have to be modelled, because people who have relatively higher levels of
immunity have less incentive to take vaccination. Similarly, the overall health of the vaccinee,
including the presence of chronic diseases, such as hypertension, diabetes and chronic heart diseases,
and the perceived correlation of these conditions with severe COVID-19 [69,70] will need to be
modelled, as will the perceived and real likelihood of adverse side effects from the vaccine (especially
in individuals with other chronic diseases).

Finally, the logistic and human resource management challenges in distributing and administering
the vaccine, such as transport of vaccine, storage of vaccine, availability of clinical and support staff to
administer the vaccine, and the durability of vaccine after manufacture are factors that need to be
considered and modelled in understanding the SARS-CoV-2 vaccination uptake.
4.3. Coupling between game theory and simulation
Usually, when the prevalence of a disease decreases, the perceived risk decreases, resulting in a smaller
perceived payoff for taking the vaccine, which will in turn result in less vaccine uptake. This may over
time result in the re-emergence of disease, which will in turn increase the payoff, so more people will take
the vaccine. Therefore, there is a risk that COVID-19 will become endemic, and go through endemic
stable cycles (and vaccine uptake will also go through corresponding cycles), if the perceived ‘payoff’
for taking the vaccine is not high enough on average when the prevalence becomes relatively low [4].
It will be important to establish the conditions under which the SARS-CoV-2 vaccination uptake will
go through such cycles, in different countries and subdemographics, so that policy decisions can be
made that ensure the payoff for the vaccine is always high enough to avoid such endemic stable
cycles. As such, game-theoretic modelling of vaccination uptake has to be tightly coupled with high-
fidelity simulation modelling [14,15] of population demographics and disease dynamics, using
techniques such as agent-based modelling, to gain a holistic picture about vaccination uptake.
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Figure 1. Simulation of epidemic spread in Australia using the ACEMod platform ((a) adapted from [15]—reprinted with permission
from Elsevier; (b) adapted from [14]—reprinted with permission from exclusive licensee American Association for the Advancement of
Science). (a) Prevalence proportion choropleths showing the spatial distribution of simulated epidemics in Australia for R0 = 1.5 and
R0 = 2.0. The minimum prevalence (green) is 5 × 10−3 and the maximum prevalence (red) is 8 × 10−2. The distribution is shown for
days 62 (i) and 88 (ii). Both simulations are sample realizations comprising the same demographics (contact) and mobility networks,
as well as identical seeding at the same rate at major international airports around Australia. The epidemic peaks at larger cities at
similar times, whereas less populous areas are less likely to synchronize [14]. (b) The ensemble average of prevalence for simulated
influenza epidemics in 2006, 2011 and 2016, with clear trends in the increased peak prevalence and faster spreading rates [15].
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In particular, large-scale agent-based simulation methods [55] can be used to model population
demographics, including age, gender and household distributions of people, commuting and travel
patterns, workplace locations and size distributions, school location and size distributions, and the
mixing patterns of people [15] (figure 1). These can in turn be used to estimate epidemic parameters
such as transmissibility, basic reproduction number, effective reproduction number, incidence,
prevalence and cumulative incidence. An inter-city flux model [4,16–18], populated from census data
[14,15], could be used to model travelling patterns and their effect on infection spread.
5. Applying game theory in the allocation and prioritization of resources
The allocation, prioritization and distribution of scarce resources needed for implementation is an
important aspect of any vaccination programme, particularly in countries like India and Brazil with
large populations and moderate per capita spending on health [71]. Such resources include human
resources, vaccine resources, rolling stock and storage facilities. As a result, targeting decisions
inevitably will need to be made [72,73]. Therefore, the vaccination programme becomes a resource
allocation problem, and modelling optimal vaccination resource allocation is essential.

In scenarios where limited resources have to be optimally distributed and used, cooperative game
theory can be applied with maximum benefit. Often, the outcome of a cooperative game played in a
system is equivalent to the result of a constrained optimization process [74]: therefore, such
cooperative games are often solved by using a linear programming framework or other optimization
tools. In the context of SARS-CoV-2 vaccination, minimization of epidemic parameters, such as
incidence or prevalence, minimization of economic costs of the pandemic, minimization of mortality
and minimization of disruption to daily lives could be some of the goals of governments and
policymakers in deploying vaccines. Therefore, vaccination prioritization could be modelled as a
constrained multi-objective optimization problem in real time [75], and cooperative game theory, again
coupled with simulation modelling techniques, could be used to solve it.

Clearly, the multi-objective optimization will have to take into account the nature of the vaccine: if the
vaccine reduces the transmissibility of SARS-CoV-2, prioritization should be given to targeting
individuals, cities or states that can act as critical nodes of transmission or superspreaders. Therefore,
the goal will be to reduce transmission, or the number of diagnosed cases. Whereas if the vaccine
reduces symptom severity or mortality, prioritization should be given to individuals, cities or states
that are likely to have poor outcomes. Therefore, the goal will be to reduce mortality and morbidity.
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6. Conclusion
In this position paper, we articulated and discussed the view that vaccination uptake will have the most
significant influence in the ultimate control of the COVID-19 pandemic, and effective modelling of
uptake using appropriate tools, therefore, is of paramount importance. We presented the case for
game theory, coupled with simulation techniques, social network analysis and agent-based modelling,
to be the most significant mathematical and computational toolset available for this modelling. We
highlighted that while the efficacy of the vaccines developed, as well as the efficiency of testing,
contact tracing and isolation procedures, shall remain important factors in containing the COVID-19
pandemic, the effectiveness of the vaccination programme and the level of vaccination uptake will
surpass these factors in significance in the effort to finally contain, locally eliminate and globally
stabilize the COVID-19 pandemic.

We discussed the modelling of vaccination decision-making in detail, and articulated that this has
two components: (i) the decision-making process by individuals to get the vaccine and (ii) the
decision-making process by governments and policymakers to choose vaccinees, given the reality of
limited vaccine doses at the initial stages of vaccination. We argued that the individual decision-
making regarding vaccination uptake is influenced by a range of factors including demographics,
physical location, level of interaction, the health of the vaccinee, epidemic parameters and perceptions
about the vaccine being introduced. Similarly, the decision-making of the government will be
influenced by epidemic parameters, the nature of the vaccine being introduced, logistics, management
of human resources needed for the vaccination effort and the amount of vaccine doses available. We
explained that non-cooperative game theory is ideally suited for modelling individual decision-
making behaviour regarding vaccination, while cooperative game theory can be used to inform
government decisions regarding prioritization.

The suggested approach is not without challenges. In particular, it is clear that a large array of factors
influence vaccination uptake, and capturing them all in the form of utility functions used in game theory
will be particularly challenging. At present, we have limited understanding about the rapidly evolving
SARS-CoV-2 pathogen, and some initial modelling may soon become outdated as the pathogen evolves
further and new strains emerge. Modelling efficacy of different vaccines against the new strains might be
particularly challenging, as their efficacy was initially measured against strains which were spreading at
the time of clinical trials. Despite these challenges, we believe that this position paper provides a
comprehensive roadmap for modelling vaccination uptake, and will stimulate research and
deliberation among all stakeholders which will aid the successful implementation of vaccination
programmes against COVID-19 and its decisive containment soon.
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