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Spatial reciprocity is a well known tour de force of cooperation promotion. A thorough understanding of the
effects of different population densities is therefore crucial. Here we study the evolution of cooperation in
social dilemmas on different interaction graphs with a certain fraction of vacant nodes. We find that sparsity
may favor the resolution of social dilemmas, especially if the population density is close to the percolation
threshold of the underlying graph. Regardless of the type of the governing social dilemma as well as
particularities of the interaction graph, we show that under pairwise imitation the percolation threshold is a
universal indicator of how dense the occupancy ought to be for cooperation to be optimally promoted. We
also demonstrate that myopic updating, due to the lack of efficient spread of information via imitation,
renders the reported mechanism dysfunctional, which in turn further strengthens its foundations.

S
ince the seminal paper on games and spatial chaos1, spatial reciprocity has been built upon as a powerful
mechanism for the promotion of cooperation2. Alongside kin and group selection3,4 as well as direct and
indirect reciprocity5–9, it completes the list of the big five10 held responsible for why we tend to overcome our

selfishness for the greater common good. Aiding its popularity is certainly the fact that its workings can be
described in a couple of lines. If the interactions amongst players are restricted to only a few individuals by means
of a graph, then cooperators can survive by means of forming compact clusters, which minimizes the potential
exploitation by defectors and protects those that are located in the interior of such clusters against an invasion. It is
along the lines of this observation that studies on the evolution of cooperation have received a substantial boost, as
evidenced in several reviews that capture succinctly recent advances on this topic11–14.

One of the most notable spinoff discoveries stemming from the early works on the importance of spatial
structure12,15–17 has been that complex networks, having the connectivity structure similar to that of social net-
works, are very beneficial for the evolution of cooperation18–33. More generally, it was discovered that the
heterogeneity or diversity allows for cooperative behavior to prevail even if the temptations to defect are
large34–38. Recently, evolutionary games have also been studied in growing populations39,40 and hierarchical
structures41, thus elegantly continuing this line of research.

Another important avenue of research having its roots firmly in spatial games is the study of disordered
environments42, which subsequently gave rise to studies clarifying the role of mobility in different evolutionary
settings43–48. It is by now a fact that mobility of players can pave the way towards a successful evolution of
cooperation, even if the conditions are noisy and do not necessarily favor the spreading of cooperators. Apart
from an early work on diluted lattices42, however, the primary impact of population density has not been explored.
Given that the early experiments on the behavior of rats under crowded conditions revealed that too high
population densities may induce a variety of destructive conditions, ranging from infant cannibalism over
excessive aggression to increased mortality at all ages49, and that it was later confirmed that similar effects of
overcrowding can be observed not just by rodents, but also by primates50 and humans51, we are therefore
motivated to examine in detail the role of the population density by the resolution of social dilemmas. For this
purpose, we study the evolution of cooperation in the prisoner’s dilemma, the snowdrift game and the stag-hunt
game on different lattices. All the simulation details are described in the Methods, while here we proceed with
presenting the results.
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Results
As motivational results presented in Fig. 1(a) demonstrate, the usage
of ‘‘choosing the best’’ strategy updating rule, during which a player
follows unconditionally the strategy of its neighbor that has the
largest payoff, has a detrimental impact on the outcome of social
dilemmas on diluted lattices. Due to its deterministic nature, strategy
updating by choosing the best player in the neighborhood frequently
leads to the system being trapped into a frozen state, which however,
does not correspond to its global optimum. Moreover, the final state
depends sensitively on the initial configuration42,52, especially at
lower densities of players (low values of r). To avoid unwanted
properties of deterministic strategy updating, we employ a stochastic
updating rule with a direct noise parameter that allows ‘‘irrational’’
behavior, albeit with a small probability. This leads to qualitatively
different results that become independent of the initial state if r
exceeds 0.2. As Fig. 1(b) highlights, there are intermediate population
densities that play a more prominent and consistent role. Motivated
by these results, we proceed with using the pairwise stochastic imita-
tion w(sx R sy) (see Eq. 1) introduced in the Methods. Our goal is to
explore how the cooperation level depends on r, and how robust the
outcomes are if using different host latices. As described in the
Methods, a direct comparison is possible by means of normalizing
K (the uncertainty by strategy adoptions) with k (the degree that
characterizes different lattices).

Since it represents the hardest social dilemma to solve, we stay with
the focus on the prisoner’s dilemma game, and present in Fig. 2 its
outcome on four different lattices in dependence on the population
density r. It can be observed that there always exists an intermediate
value of r at which the fraction of cooperators fC is maximal.
Depending on the temptation to defect b and the type of the inter-
action graph, however, the maxima of fC occur at different r. A closer
inspection reveals that in fact the shifts are strongly related to the
percolation thresholds53 of the underlying lattices. Accordingly, in
panel (b) the maxima occur at the highest values of r, as the hon-
eycomb lattice indeed has the highest percolation threshold (p 5

0.6527) amongst the four considered lattices. Conversely, the cubic
lattice [see panel (d)], having p 5 0.2488, requires the lowest density
(largest sparsity) of players for the evolution of cooperation to be
optimally promoted.

Apart from the graph-specific dependence of the optimal r, there
are also general features common to all four interactions graphs. In
the r R 0 limit the majority of players will have no neighbors, and
hence fC simply mirrors back the initial state that is r 5 0.5. As r
increases, the few existing links between players enable defectors to

exploit cooperators without having to fear the consequences of spa-
tial reciprocity. Note that for sufficiently small r many players, as
well as large portions of the graph as a whole, will still be discon-
nected, hence prohibiting cooperators to form compact clusters and
utilizing spatial reciprocity to protect themselves against invading
defectors. Because of the random initial state, the initial invasion of
defectors will always be successful, regardless of the value of b. But
further invasions are subsequently hindered by the lack of connec-
tions between players that are utilizing different strategies, and hence
at low values of r the decay of fC is universal for all values of b. For
larger r, however, the outcome becomes independent of the initial
state and the temptation to defect more and more crucial. For higher
values of b the fC trend simply continues downward as r increases,
which indicates that new cooperative players simply serve as ‘‘sitting
ducks’’ for defectors. At lower values of b cooperators are able to
utilize the enhanced interconnectedness between them to form com-
pact clusters, while at the same time benefiting from the dilution that
prohibits defectors to exploit them with the same efficiency as on a
fully populated graph. Accordingly, fC peaks at an intermediate
(optimal) value of r, which is a bit higher but close to the percolation
threshold of the underlying interaction graph53. The fact that it is a bit
higher is simply a consequence of the fact that not all players will be
cooperators, and hence for cooperation to start percolating the frac-
tion needs to be somewhat higher to offset the defectors.

Results presented in Fig. 3 for the snowdrift [panel (a)] and the
stag-hunt game [panel (b)] further add to the general validity of the
outlined mechanism. The percolation threshold still marks the
advent of enhanced cooperation, although for the stag-hunt game
[panel (b)], which is in itself more lenient for the evolution of coop-
eration, the all-C state rather than an optimum in fC sets in. Along
with the results reported previously for the multi-player interaction
public goods game54, this leads us to the conclusion that a population
density close to the percolation threshold is optimal for the successful
evolution of cooperation. In particular, the players are connected
enough to transfer the more advantageous mutually beneficial coop-
erative strategy, while simultaneously the graph is diluted enough for
the defectors to be unable to invade cooperators effectively. Crucial
for this scenario to be valid is thus percolation, and directly related to
that the fact that information can spread efficiently by means of
stochastic strategy imitation.

The validity of this argument can be tested effectively by replacing
the strategy updating via imitation by the so-called myopic strategy
updating rule55,56. In this case, every player makes decisions locally as
an individual, always assuming an unchanged neighborhood (see

Figure 1 | Fraction of cooperators fC in dependence on the population density r for different values of the temptation to defect b (see legend), as
obtained for the prisoner’s dilemma game on the square lattice under sequential updating. Results in panel (a) were obtained with the ‘‘choosing the

best’’ strategy updating rule following42, while results in panel (b) were obtained by means of a stochastic version of the same rule. If players are no longer

forced to strictly adopt the strategy of their best neighbor, the fC(r) dependence changes dramatically, exhibiting a consistent optimum at an intermediate

value of r. This is because frozen states that do not correspond to the global optimum, as well as the sensitivity on initial conditions, especially at low r

values, are avoided. Introducing some uncertainty to strategy adoptions [panel (b)] thus helps to reveal a more interesting impact of population density as

was previously reported to exist.
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Methods for details). If the more successful strategy is not adopted,
the existence or absence of the percolation of players becomes an
uncritical property of the interaction topology, and hence it is
expected that the outlined mechanism will no longer work. Results
presented in Fig. 4 fully confirm this expectation, as indeed neither
for the prisoner’s dilemma [panel (a)] nor for the snowdrift game
[panel (b)] a decisive importance of an intermediate population
density cannot be observed. As the population density increases,
the fraction of cooperators decays more or less fast in the prisoner’s

dilemma game, indicating that the new connections amongst players
mainly serve the defecting strategy by allowing an ever increasing
efficiency of local exploitation. The situation for the snowdrift game,
shown in Fig. 4(b), is a bit different because the myopic strategy
updating allows for the emergence of a role-separating distribution
of Cs and Ds independently on the value of r, which is reminiscent
of anti-ferromagnetic order56. The increase in the level of coopera-
tion, however, is significantly lower than reported in Fig. 3(a) for
imitation.

Figure 3 | Fraction of cooperators fC in dependence on the population density r for different values of the cost-to-benefit ration r (see legend), as
obtained on the square lattice for the snowdrift [panel (a)] and the stag-hunt [(panel (b)] game by using strategy imitation defined by Eq. 1. For the

snowdrift game the results are qualitatively identical as for the prisoner’s dilemma game in that there exists an intermediate value of r where fC is maximal.

Since the stag-hung game is a less severe social dilemma, the exceeding of the percolation threshold is sufficient for eliciting the all-C state. Regardless of

the governing social dilemma, however, the percolation threshold is an important benchmark for how high a population density ought to be for

cooperation to thrive. Error bars are comparable to the size of symbols.

Figure 2 | Fraction of cooperators fC in dependence on the population density r for different values of the temptation to defect b (see legend), as
obtained for the prisoner’s dilemma game on the square lattice [panel (a)], the honeycomb lattice [(panel (b)], the triangular lattice [(panel (c)] and the
cubic lattice [(panel (d)]. It can be observed that, regardless of the type of the underlying interaction graph, there always exists and intermediate value of r

at which fC is maximal. More importantly, if b is close to the critical value at which cooperators would normally die out, the optimal population density is

strongly related to the percolation threshold of the interaction graph. For the square lattice the latter is p 5 0.5, for the honeycomb lattice it is p 5 0.6527,

for the triangular lattice it is p 5 0.3472, while for the cubic lattice it is p 5 0.2488. Accordingly, percolation plays a key role by the resolution of social

dilemmas by significantly elevating the effectiveness of spatial reciprocity. Error bars are comparable to the size of symbols.
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The outcomes of the stag-hunt game under myopic updating
presented in Fig. 5 also agree with our expectations, only that in
this case r 5 0.5 constitutes a transition point, above (below)
which a pure D (C) phase evolves. Accordingly, increasing r
towards one simply drives the system towards the expected state.
The percolation threshold plays not role at all. Exactly at r 5 0.5,
however, both the pure C and the pure D phase are equally
probable. At low population densities (left and middle snapshot)

both phases can coexist isolated from one another, hence yielding
fC 5 0.5, while at sufficiently high populations densities (right
snapshot) a pure phase will eventually be reached (not shown) but
since both outcomes are equally probable fC is again 0.5.
Regardless of the studied social dilemma, and also regardless of
the type of the interaction graph, myopic updating cannot sup-
port an efficient transfer of information between the players, and
thus renders the reaching of the percolation threshold with the

Figure 4 | Fraction of cooperators fC in dependence on the population density r, as obtained on the square lattice under myopic updating (see Eq. 2),
for the prisoner’s dilemma [panel (a)] and the snowdrift game [panel (b)]. Regardless of the governing temptation to defect b, in the prisoner’s dilemma

game the population density has a monotonous impact on fC. In the snowdrift game, however, the myopic updating can lead to a role-separating

distribution of Cs and Ds that is reminiscent of anti-ferromagnetic order. Yet the increase of cooperation stemming from this is practically negligible,

especially if compared to the results presented in Fig. 3(a), where imitation was used as the driving force behind the evolution of strategies. These

observations confirm that the mechanism by means of which the percolation threshold is established as the optimal population density for the resolution

of social dilemmas relies on the percolation of cooperators and the directly related effective spread of information via strategy imitation. Myopic updating

hinders the later, and hence the mechanism becomes dysfunctional. Error bars are comparable to the size of symbols.

Figure 5 | Fraction of cooperators fC in dependence on the population density r, as obtained on the square lattice under myopic updating (see Eq. 2),
for the stag-hunt game. As reported for the prisoner’s dilemma and the snowdrift game in Fig. 4, here too the population density has a monotonous

impact, which however depends on the value of the cost-to-benefit ratio r. If r , 0.5 the final destination is the all-C phase, and accordingly, increasing r

leads progressively towards this solution. Conversely, for r . 0.5 the final outcome on the fully populated lattice is the all-D phase, and thus as r increases

fC decays. At r 5 0.5, however, there is a transition from the pure C to the pure D phase, and in fact on a fully populated lattice both are equally probable,

hence fC 5 0.5. For low values of r, however, the manifestation of fC 5 0.5 is not by means of an eventual evolution of either a pure C or a pure D phase, but

rather by the simultaneous yet isolated coexistence of both phases, as demonstrated by the characteristic snapshots in the bottom row left (r 5 0.2) and

middle (r 5 0.5). If r is sufficiently large, however, the original solution is recovered. The right snapshot was obtained at r 5 0.8 and demonstrates such a

scenario, but the stationary state (which will be either a pure C or a pure D phase) is not yet reached. In the snapshots (bottom row) white denotes vacant

sites, while green and red are cooperators and defectors, respectively.

www.nature.com/scientificreports
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population density irrelevant. This in turn confirms the validity of
our arguments and establishes the percolation threshold as the
key property of a graph that determine the optimal population
density.

Discussion
Previous studies highlighted that imitation plays a decisive role by
the evolution of strategies amongst humans. By building on this fact,
we have shown that the percolation threshold of the matrix that
determines the interactions between players constitutes the optimal
population density for the resolution of social dilemmas that are
governed by pairwise interactions. For the mechanism to work, some
level of uncertainty by strategy adoptions is crucial as it prevents the
system being trapped into a frozen state, and it alleviates the depend-
ence on initial conditions, especially if the population density is high.
We have demonstrated that the results are valid for all social dilemma
games and on a wide class of different lattices, which together with
the previous results on the public goods game that is governed by
group interactions54, firmly solidifies the percolation threshold as the
crucial property that determines the optimal population density for
the evolution of cooperation. As a reverse test, we have verified the
validity of our arguments by means of the myopic updating rule,
under which players are no longer able to exchange information
directly between each other. Expectedly, we have found that the
percolation threshold no longer has a decisive impact on the outcome
of the three considered social dilemmas. This confirms that the per-
colation threshold constitutes the optimal population density for the
resolution of social dilemmas by ensuring the percolation of coop-
erators and the directly related effective spread of information via
strategy imitation.

It can be argued that the optimal population density amplifies the
mechanism of spatial reciprocity1. If the population density is too
low, vacant sites prohibit the formation of compact clusters by cut-
ting short the communication paths between the cooperators. Too
high populations densities, on the other hand, enable an effective
invasion of defectors, which again disrupts reciprocity amongst
cooperators by splitting them up into isolated clusters. Presented
results thus allow us to understand the impact of population density
on the resolution of social dilemmas through the concept of percola-
tion, and by doing so they provide an interesting interdisciplinary
link between statistical physics and the evolution of cooperation.

Methods
Within this work we consider the spatial prisoner’s dilemma, the spatial snowdrift
and the spatial stag-hunt game. In all three games players can choose either to
cooperate (sx 5 C 5 1) or to defect (sx 5 D 5 0), whereby mutual cooperation yields
the reward R, mutual defection leads to punishment P, and the mixed choice gives the
cooperator the sucker’s payoff S and the defector the temptation T. Depending on the
rank of these four payoffs we have the prisoner’s dilemma game if T . R . P . S, the
snowdrift game if T . R . S . P, and the stag-hunt game if R . T . P . S. For
simplicity, we here take R 5 1 and P 5 0, which imposes boundaries on the remaining
two payoffs of the form –1 # S # 1 and 0 # T # 2. Further zooming in on the most
relevant features of the three dilemmas, we take for the prisoner’s dilemma the
temptation to defect T 5 b and the punishment for mutual defection P 5 01, for the
snowdrift game we take T 5 1 1 r and S 5 1 – r57, while for the stag-hunt game we use
T 5 r and S 5 –r, where r in both cases is the cost-to-benefit ratio. As interaction
graphs that characterize the topology of the matrix containing players, we employ the
square, honeycomb, triangular and the cubic lattice, each with linear size L and only a
fraction r of occupied nodes. The remaining 1 – r nodes are left vacant. The random
dilution is performed only once at the start of the game.

Following the initialization, we carry out Monte Carlo simulations comprising the
following elementary steps. First, a randomly selected player x acquires its payoff px

by playing the game with its k neighbors, as specified by the underlying interaction
graph. Next, one randomly chosen neighbor, denoted by y, also acquires its payoff py

by playing the game with its four neighbors. Lastly, player x tries to enforce its strategy
sx on player y in accordance with the probability

w sx?sy
� �

~
1

1z exp py{px
� ��

kKð Þ
� � ð1Þ

where K determines the level of uncertainty by strategy adoptions12, which can be
attributed to errors in judgment due to mistakes and external influences that affect the

evaluation of the opponent. Without loss of generality we set K 5 0.1 normalized with
the degree of the underlying lattice k, implying that better performing players are
readily imitated, but it is not impossible to adopt the strategy of a player performing
worse. Each Monte Carlo step (MCS) gives a chance for every player to enforce its
strategy onto one of the neighbors (if they exist, which at sufficiently small r will not
be the case) once on average. The average density of cooperators fC 5 r–1L–2Sxsx is
determined in the stationary state after sufficiently long relaxation times. Depending
on the actual conditions the linear system size was varied from L 5 200 to 1200 and
the relaxation time was varied from 104 to 106 MCS to ensure proper accuracy. The
presented results are independent of the system size and valid in the large size limit.

As an alternative to imitation we also consider the myopic updating rule, where
instead of comparing payoffs with a neighboring player and determining w(sx R sy) as
the probability of strategy transfer (see Eq. 1), a randomly chosen player x changes its
strategy sx to the other strategy s0x with a probability

q s0x?sx
� �

~
1

1z exp px{p0x
� ��

kKð Þ
� � ð2Þ

where px and p0x are the payoffs of player x when playing sx and s0x in its neighborhood.
The simulation details and the determination of fC, however, are the same as by
imitation.
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