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We consider an environment where players are involved in a public goods game and must decide repeatedly
whether to make an individual contribution or not. However, players lack strategically relevant information
about the game and about the other players in the population. The resulting behavior of players is
completely uncoupled from such information, and the individual strategy adjustment dynamics are driven
only by reinforcement feedbacks from each player’s own past. We show that the resulting ‘‘directional
learning’’ is sufficient to explain cooperative deviations away from the Nash equilibrium. We introduce the
concept of k–strong equilibria, which nest both the Nash equilibrium and the Aumann-strong equilibrium
as two special cases, and we show that, together with the parameters of the learning model, the maximal k–
strength of equilibrium determines the stationary distribution. The provisioning of public goods can be
secured even under adverse conditions, as long as players are sufficiently responsive to the changes in their
own payoffs and adjust their actions accordingly. Substantial levels of public cooperation can thus be
explained without arguments involving selflessness or social preferences, solely on the basis of
uncoordinated directional (mis)learning.

C
ooperation in sizable groups has been identified as one of the pillars of our remarkable evolutionary
success. While between-group conflicts and the necessity for alloparental care are often cited as the likely
sources of the other-regarding abilities of the genus Homo1,2, it is still debated what made us the ‘‘super-

cooperators’’ that we are today3,4. Research in the realm of evolutionary game theory5–10 has identified a number of
different mechanisms by means of which cooperation might be promoted11,12, ranging from different types of
reciprocity and group selection to positive interactions13, risk of collective failure14, and static network
structure15,16.

The public goods game17, in particular, is established as an archetypical context that succinctly captures the
social dilemma that may result from a conflict between group interest and individual interests18,19. In its simplest
form, the game requires that players decide whether to contribute to a common pool or not. Regardless of the
chosen strategy by the player himself, he receives an equal share of the public good which results from total
contributions being multiplied by a fixed rate of return. For typical rates of return it is the case that, while the
individual temptation is to free-ride on the contributions of the other players, it is in the interest of the collective
for everyone to contribute. Without additional mechanisms such as punishment20, contribution decisions in such
situations18,19 approach the free-riding Nash equilibrium21 over time and thus lead to a ‘‘tragedy of the com-
mons’’22. Nevertheless, there is rich experimental evidence that the contributions are sensitive to the rate of
return23 and positive interactions13, and there is evidence in favor of the fact that social preferences and beliefs
about other players’ decisions are at the heart of individual decisions in public goods environments24.

In this paper, however, we shall consider an environment where players have no strategically relevant informa-
tion about the game and/or about other players, and hence explanations in terms of social preferences and beliefs
are not germane. Instead, we shall propose a simple learning model, where players may mutually reinforce
learning off the equilibrium path. As we will show, this phenomenon provides an alternative and simple explana-
tion for why contributions rise with the rate of return, as well as why, even under adverse conditions, public
cooperation may still prevail. Previous explanations of this experimental regularity18 are based on individual-level
costs of ‘error’25,26.

Suppose each player knows neither who the other players are, nor what they earn, nor how many there are, nor
what they do, nor what they did, nor what the rate of return of the underlying public goods game is. Players do not
even know whether the underlying rate of return stays constant over time (even though in reality it does) because
their own payoffs are changing due to the strategy adjustments of other players, about which they have no
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information. Without any such knowledge, players are unable to
determine ex ante whether contributing or not contributing is the
better strategy in any given period, i.e., players have no strategically
relevant information about how to respond best. As a result, the
behavior of players has to be completely uncoupled27,28, and their
strategy adjustment dynamics are likely to follow a form of reinforce-
ment29,30 feedback or, as we shall call it, directional learning31,32. We
note that, in our model, due to the one-dimensionality of the strategy
space, reinforcement and directional learning are both adequate ter-
minologies for our learning model. Since reinforcement applies also
to general strategy spaces and is therefore more general we will prefer
the terminology of directional learning. Indeed, such directional
learning behavior has been observed in recent public goods experi-
ments33,34. The important question is how well will the population
learn to play the public goods game despite the lack of strategically
relevant information. Note that well here has two meanings due to
the conflict between private and collective interests: on the one hand,
how close will the population get to playing the Nash equilibrium,
and, on the other hand, how close will the population get to playing
the socially desirable outcome.

The learning model considered in this paper is based on a particu-
larly simple ‘‘directional learning’’ algorithm which we shall now
explain. Suppose each player plays both cooperation (contributing
to the common pool) and defection (not contributing) with a mixed
strategy and updates the weights for the two strategies based on their
relative performances in previous rounds of the game. In particular, a
player will increase its weight on contributing if a previous-round
switch from not contributing to contributing led to a higher realized
payoff or if a previous-round switch from contributing to not con-
tributing led to a lower realized payoff. Similarly, a player will
decrease its weight on contributing if a previous-round switch from
contributing to not contributing led to a higher realized payoff or if a
previous-round switch from not contributing to contributing led to a
lower realized payoff. For simplicity, we assume that players make
these adjustments at a fixed incremental step size d, even though this
could easily be generalized. In essence, each player adjusts its mixed
strategy directionally depending on a Markovian performance
assessment of whether a previous-round contribution increase/
decrease led to a higher/lower payoff.

Since the mixed strategy weights represent a well-ordered strat-
egy set, the resulting model is related to the directional learning/
aspiration adjustment models31,32,35, and similar models have prev-
iously been proposed for bid adjustments in assignment games36,
as well as in two-player games37. In ref. 36 the dynamic leads to
stable cooperative outcomes that maximize total payoffs, while
Nash equilibria are reached in ref. 37. The crucial difference
between these previous studies and our present study is that our
model involves more than two players in a voluntary contribu-
tions setting, and, as a result, that there can be interdependent
directional adjustments of groups of players including more than
one but not all the players. This can lead to uncoordinated (mis)-
learning of subpopulations in the game.

Consider the following example. Suppose all players in a large
standard public goods game do not contribute to start with. Then
suppose that a number of players in a subpopulation uncoordinat-
edly but by chance simultaneously decide to contribute. If this group
is sufficiently large (the size of which depends on the rate of return),
then this will result in higher payoffs for all players including the
contributors, despite the fact that not contributing is the dominant
strategy in terms of unilateral replies. In our model, if indeed this
generates higher payoffs for all players including the freshly-turned
contributors, then the freshly-turned contributors would continue to
increase their probability to contribute and thus increase the prob-
ability to trigger a form of stampede or herding effect, which may
thus lead away from the Nash equilibrium and towards a socially
more beneficial outcome.

Our model of uncoordinated but mutually reinforcing deviations
away from Nash provides an alternative explanation for the follow-
ing regularity that has been noted in experiments on public goods
provision18. Namely, aggregate contribution levels are higher the
higher the rate of return, despite the fact that the Nash equilibrium
remains unchanged (at no-contribution). This regularity has prev-
iously been explained only at an individual level, namely that ‘errors’
are less costly – and therefore more likely – the higher the rate of
return, following quantal-response equilibrium arguments25,26. By
contrast, we provide a group-dynamic argument. Note that the
alternative explanation in terms of individual costs is not germane
in our setting, because we have assumed that players have no
information to make such assessments. It is in this sense that our
explanation complements the explanation in terms of costs by an
argument based on group dynamics.

In what follows, we present the results, where we first set up the
model and then deliver our main conclusions. We discuss the impli-
cations of our results in section 3. Further details about the applied
methodology are provided in the Methods section.

Results
Public goods game with directional learning. In the public goods
game, each player i in the population N 5 1, 2, …, n chooses whether
to contribute (ci 5 1) or not to contribute (ci 5 0) to the common
pool. Given a fixed rate of return r . 0, the resulting payoff of player i
is then ui~ 1{cið Þz r=nð Þ �

X
j[N cj. We shall call r/n the game’s

marginal per-capita rate of return and denote it as R. Note that for
simplicity, but without loss of generality, we have assumed that the
group is the whole population. In the absence of restrictions on the
interaction range of players38, i.e., in well-mixed populations, the size
of the groups and their formation can be shown to be of no relevance
in our case, as long as R rather than r is considered as the effective rate
of return.

The directional learning dynamics are implemented as follows.
Suppose the above game is infinitely repeated at time steps t 5 0,
1, 2, …, and suppose further that i, at time t, plays ct

i~1 with prob-
ability pt

i[ d,1{d½ � and ct
i~0 with probability (1{pt

i ). Let the vector
of contribution probabilities pt describe the state of the game at time
t. We initiate the game with all p0

i lying on the d-grid between 0 and 1,
while subsequently individual mixed strategies evolve randomly sub-
ject to the following three ‘‘directional bias’’ rules:

upward: if ui ct
i

� �
wui ct{1

i

� �
and ct

iwct{1
i , or if ui ct

i

� �
vui ct{1

i

� �
and ct

ivct{1
i , then ptz1

i ~pt
izd if pt

iv1; otherwise, ptz1
i ~pt

i .
neutral: if ui ct

i

� �
~ui ct{1

i

� �
and/or ct

i~ct{1
i , then ptz1

i ~pt
i ,

pt
izd, or pt

i{d with equal probability if 0vpt
iv1; otherwise,

ptz1
i ~pt

i .
downward: if ui ct

i

� �
wui ct{1

i

� �
and ct

ivct{1
i , or if ui ct

i

� �
vui ct{1

i

� �
and ct

iwct{1
i , then ptz1

i ~pt
i{d if pt

iw0; otherwise, ptz1
i ~pt

i .
Note that the second, neutral rule above allows random deviations

from any intermediate probability 0 , pi , 1. However, pi 5 0 and
pi 5 1 for all i are absorbing state candidates. We therefore introduce
perturbations to this directional learning dynamics and study the
resulting stationary states. In particular, we consider perturbations
of order E such that, with probability 1{E, the dynamics are gov-
erned by the original three ‘‘directional bias’’ rules. However, with
probability E, either ptz1

i ~pt
i , ptz1

i ~pt
i{d or ptz1

i ~pt
izd happens

equally likely (with probability E=3) but of course obeying the
ptz1

i [ 0,1½ � restriction.

Provisioning of public goods. We begin with a formal definition of
the k–strong equilibrium. In particular, a pure strategy imputation s*
is a k-strong equilibrium of our (symmetric) public goods game if, for

all C # N with jCj # k, ui s�C; s�N\C

� �
§ui s’C; s�N\C

� �
for all i g C for

any alternative pure strategy set s’C for C. As noted in the previous
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section, this definition bridges, one the one hand, the concept of the
Nash equilibrium in pure strategies21 in the sense that any k–strong
equilibrium with k . 0 is also a Nash equilibrium, and, on the other
hand, that of the (Aumann-)strong equilibrium39,40 in the sense that
any k–strong equilibrium with k 5 n is Aumann strong. Equilibria in
between (for 1 , k , n) are ‘‘more stable’’ than a Nash equilibrium,
but ‘‘less stable’’ than an Aumann-strong equilibrium.

The maximal k-strengths of the equilibria in our public goods
game as a function of r are depicted in Fig. 1 for n 5 16. The cyan-
shaded region indicates the ‘‘public bad game’’ region for r , 1 (R ,

1/n), where the individual and the public motives in terms of the
Nash equilibrium of the game are aligned towards defection. Here ci

5 0 for all i is the unique Aumann-strong equilibrium, or in terms of
the definition of the k–strong equilibrium, ci 5 0 for all i is k–strong
for all k g [1, n]. The magenta-shaded region indicates the typical
public goods game for 1 , r , n (1/n , R , 1), where individual and
public motives are conflicting. Here there exists no Aumann-strong
equilibria. The outcome ci 5 0 for all i is the unique Nash equilib-
rium, and that outcome is also k-strong equilibrium for some k g [1,
n), where the size of k depends on r and n in that hk/hr # 0 while hk/
hn $ 0. Finally, the gray-shaded region indicates the unconflicted
public goods game for r . n (R . 1), where individual and public
motives are again aligned, but this time towards cooperation. Here
ci 5 1 for all i abruptly becomes the unique Nash and Aumann-
strong equilibrium, or equivalently the unique k–strong equilibrium
for all k g [1, n].

If we add perturbations of order E to the unperturbed public goods
game with directional learning that we have introduced in the pre-
vious section 2, there exist stationary distributions of pi and the

following proposition can be proven. In the following, we denote
by ‘‘k’’ the maximal k–strength of an equilibrium.

Proposition: As t R ‘, starting at any p0, the expectation with
respect to the stationary distribution is E[pt] . 1/2 if R $ 1 and E[pt]
, 1/2 if R , 1. LE pt½ �=LEv0 if R $ 1, and LE pt½ �=LEw0 if R , 1.
Moreover, hE[pt]/hd . 0, and hE[pt]/hd , 0 if R $ 1. Finally, hE[pt]/
hk , 0 if R , 1.

We begin the proof by noting that the perturbed process given by
our dynamics results in an irreducible and aperiodic Markov chain,
which has a unique stationary distribution. When E~0, any absorb-
ing state must have pt

i~0 or 1 for all players. This is clear from the
positive probability paths to either extreme from intermediate states
given by the unperturbed dynamics. We shall now analyze whether
pt

i~0 or 1, given that pt
j~0 or 1 for all j ? i, has a larger attraction

given the model’s underlying parameters.
If R $ 1, the probability path for any player to move from pt

i~0 to
ptzT

i ~1 in some T 5 1/d steps requires a single perturbation for that
player and is therefore of the order of a single E. By contrast, the
probability for any player to move from pt

i~1 to ptzT
i ~0 in T steps

is of the order E3, because at least two other players must increase
their contribution in order for that player to experience a payoff
increase from his non-contribution. Along any other path or if pt is
such that there are not two players j with pt

j~0 to make this move,

then the probability for i to move from pt
i~1 to ptzT

i ~0 in T steps
requires even more perturbations and is of higher order. Notice that,
for any one player to move from pt

i~0 to ptzT
i ~1 we need at least

two players to move away from pt
i~0 along the least-resistance

paths. Because contributing 1 is a best reply for all R $ 1, those
two players will also continue to increase if continuing to contribute
1. Notice that the length of the path is T 5 1/d steps, and that the path
requires no perturbations along the way, which is less likely the
smaller d.

If R , 1, the probability for any player to move from pt
i~1 to

ptzT
i ~0 in some T 5 1/d steps requires a single perturbation for that

player and is therefore of the order of a single E. By contrast, the
probability for any player to move from pt

i~0 to ptzT
i ~1 in some T

steps is at least of the order Ek, because at least k players (correspond-
ing to the maximal k-strength of the equilibrium) must contribute in
order for all of these players to experience a payoff increase. Notice
that k decreases in R. Again, the length of the path is T 5 1/d steps,
and that path requires no perturbations along the way, which is less
likely the smaller d. With this, we conclude the proof of the proposi-
tion. However, it is also worth noting a direct corollary of the pro-
position; namely, as E?0, E[pt] R 1 if R $ 1, and E[pt] R 0 if R , 1.

Lastly, we simulate the perturbed public goods game with dir-
ectional learning and determine the actual average contribution
levels in the stationary state. Color encoded results in dependence
on the normalized rate of return R and the responsiveness of players
to the success of their past actions d (alternatively, the sensitivity of
the individual learning process) are presented in Fig. 2 for E~0:1.
Small values of d lead to a close convergence to the respective Nash
equilibrium of the game, regardless of the value of R. As the value of d
increases, the pure Nash equilibria erode and give way to a mixed
outcome. It is important to emphasize that this is in agreement, or
rather, this is in fact a consequence of the low k–strengths of the non-
contribution pure equilibria (see Fig. 1). Within intermediate to large
d-values the Nash equilibria are implemented in a zonal rather than
pinpoint way. When the Nash equilibrium is such that all players
contribute (R . 1), then small values of d lead to more efficient
aggregate play (recall any such equilibrium is n–strong).
Conversely, by the same logic, when the Nash equilibrium is char-
acterized by universal free-riding, then larger values of d lead to more
efficient aggregate play. Moreover, the precision of implementation
also depends on the rate of return in the sense that uncoordinated

Figure 1 | The maximal k-strength of equilibria in the studied public
goods game with directional learning. As an example, we consider the

population size being n 5 16. As the rate of return r increases above 1, the

Aumann-strong (n–strong) ci 5 0 for all i (full defection) equilibrium

looses strength. It is still the unique Nash equilibrium, but its maximal

strength is bounded by k 5 17 2 r. As the rate of return r increases further

above n (R . 1), the ci 5 1 for all i (full cooperation) equilibrium suddenly

becomes Aumann-strong (n–strong). Shaded regions denote the public

bad game (r , 1), and the public goods games with conflicting (1 , r , n)

and aligned (R . 1) individual and public motives in terms of the Nash

equilibrium of the game (see main text for details). We note that results for

other population and/or group sizes are the same over R, while r and the

slope of the red line of course scale accordingly.
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deviations of groups of players lead to more efficient outcomes the
higher the rate of return. In other words, the free-riding problem is
mitigated if group deviations lead to higher payoffs for every member
of an uncoordinated deviation group, the minimum size of which
(that in turn is related to the maximal k– strength of equilibrium) is
decreasing with the rate of return.

Simulations also confirm that the evolutionary outcome is quali-
tatively invariant to: i) The value of E as long as the latter is bounded
away from zero, although longer convergence times are an inevitable
consequence of very small E values (see Fig. 3); ii) The replication of
the population (i.e., making the whole population a group) and the
random remixing between groups; and iii) The population size,
although here again the convergence times are the shorter the smaller
the population size. While both ii and iii are a direct consequence of
the fact that we have considered the public goods game in a well-
mixed rather than a structured population (where players would
have a limited interaction range and where thus pattern formation
could play a decisive role38), the qualitative invariance to the value of
E is elucidated further in Fig. 3. We would like to note that by ‘‘qual-
itative invariance’’ it is meant that, regardless of the value of Ew0, the
population always diverges away from the Nash equilibrium towards
a stable mixed stationary state. But as can be observed in Fig. 3, the
average contribution level and its variance both increase slightly as E
increases. This is reasonable if one considers E as an exploration or
mutation rate. More precisely, it can be observed that, the lower the
value of E, the longer it takes for the population to move away from
the Nash equilibrium where everybody contributes zero in the case

that 1/n , R , 1 (which was also the initial condition for clarity).
However, as soon as initial deviations (from pi 5 0 in this case)
emerge (with probability proportional to E), the neutral rule in the
original learning dynamics takes over, and this drives the population
towards a stable mixed stationary state. Importantly, even if the value
of E is extremely small, the random drift sooner or later gains
momentum and eventually yields similar contribution levels as those
attainable with larger values of E. Most importantly, note that there is
a discontinuous jump towards staying in the Nash equilibrium,
which occurs only if E is exactly zero. If E is bounded away from zero,
then the free-riding Nash equilibrium erodes unless it is n–strong
(for very low values of R # 1/n).

Discussion
We have introduced a public goods game with directional learning,
and we have studied how the level of contributions to the common
pool depends on the rate of return and the responsiveness of indivi-
duals to the successes and failures of their own past actions. We have
shown that directional learning alone suffices to explain deviations
from the Nash equilibrium in the stationary state of the public goods
game. Even though players have no strategically relevant information
about the game and/or about each others’ actions, the population
could still end up in a mixed stationary state where some players
contributed at least part of the time although the Nash equilibrium
would be full free-riding. Vice versa, defectors emerged where coop-
eration was clearly the best strategy to play. We have explained these
evolutionary outcomes by introducing the concept of k–strong equi-
libria, which bridge the gap between Nash and Aumann-strong equi-
libria. We have demonstrated that the lower the maximal k–strength
and the higher the responsiveness of individuals to the consequences
of their own past strategy choices, the more likely it is for the popu-
lation to (mis)learn what is the objectively optimal unilateral (Nash)
play.

These results have some rather exciting implications. Foremost,
the fact that the provisioning of public goods even under adverse
conditions can be explained without any sophisticated and often

Figure 2 | Color-encoded average contribution levels in the unperturbed
public goods game with directional learning. Simulations confirm that,

with little directional learning sensitivity (i.e. when d is zero or very small),

for the marginal per-capita rate of return R . 1 the outcome ci 5 1 for all i

is the unique Nash and Aumann-strong equilibrium. For R 5 1 (dashed

horizontal line), any outcome is a Nash equilibrium, but only ci 5 1 for all i

is Aumann-strong while all other outcomes are only Nash equilibria. For R

, 1, ci 5 0 for all i is the unique Nash equilibrium, and its maximal k–

strength depends on the population size. This is in agreement with results

presented in Fig. 1. Importantly, however, as the responsiveness of players

increases, contributions to the common pool become significant even in

the defection-prone R , 1–region. In effect, individuals’ (mis)learn what is

best for them and end up contributing even though this would not be a

unilateral best reply. Similarly, in the R . 1 region free-riding starts to

spread despite of the fact that it is obviously better to cooperate. For both

these rather surprising and counterintuitive outcomes to emerge, the only

thing needed is directional learning.

Figure 3 | Time evolution of average contribution levels, as obtained for
R 5 0.7, d 5 0.1 and different values of E (see legend). If only Ew0, the

Nash equilibrium erodes to a stationary state where at least some members

of the population always contribute to the common pool. There is a

discontinuous transition to complete free-riding (defection) as E?0.

Understandably, the lower the value of E (the smaller the probability for the

perturbation), the longer it may take for the drift to gain on momentum

and for the initial deviation to evolve towards the mixed stationary state.

Note that the time horizontally is in logarithmic scale.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 8010 | DOI: 10.1038/srep08010 4



lengthy arguments involving selflessness or social preference holds
promise of significant simplifications of the rationale behind see-
mingly irrational individual behavior in sizable groups. It is simply
enough for a critical number (depending on the size of the group and
the rate of return) of individuals to make a ‘‘wrong choice’’ at the
same time once, and if only the learning process is sufficiently fast or
naive, the whole subpopulation is likely to adopt this wrong choice as
their own at least part of the time. In many real-world situations,
where the rationality of decision making is often compromised due to
stress, propaganda or peer pressure, such ‘‘wrong choices’’ are likely
to proliferate. As we have shown in the context of public goods
games, sometimes this means more prosocial behavior, but it can
also mean more free-riding, depending only on the rate of return.

The power of directional (mis)learning to stabilize unilaterally
suboptimal game play of course takes nothing away from the more
traditional and established explanations, but it does bring to the table
an interesting option that might be appealing in many real-life situa-
tions, also those that extend beyond the provisioning of public goods.
Fashion trends or viral tweets and videos might all share a compon-
ent of directional learning before acquiring mainstream success and
recognition. We hope that our study will be inspirational for further
research in this direction. The consideration of directional learning
in structured populations41,42, for example, appears to be a particu-
larly exciting future venture.

Methods
For the characterization of the stationary states, we introduce the concept of k–strong
equilibria, which nests both the Nash equilibrium21 and the Aumann-strong equi-
librium39,40 as two special cases. While the Nash equilibrium describes the robustness
of an outcome against unilateral (1-person) deviations, the Aumann-strong equi-
librium describes the robustness of an outcome against the deviations of any sub-
group of the population. An equilibrium is said to be (Aumann-)strong if it is robust
against deviations of the whole population or indeed of any conceivable subgroup of
the population, which is indeed rare. Our definition of the k–strong equilibrium
bridges the two extreme cases, measuring the size of the group k $ 1 (at or above
Nash) and hence the degree to which an equilibrium is stable. We note that our
concept is related to coalition-proof equilibrium43,44. In the public goods game, the
free-riding Nash equilibrium is typically also more than 1–strong but never n–strong.
As we will show, the maximal strength k of an equilibrium translates directly to the
level of contributions in the stationary distribution of our process, which is addi-
tionally determined by the normalized rate of return R and the responsiveness of
players to the success of their past actions d, i.e., the sensitivity of the individual
learning process.
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