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We study the impact of static and dynamic disorder on the phenomenon of stochastic resonance (SR) in

a representative soft matter system. Due to their extreme susceptibility to weak perturbations, soft

matter systems appear to be excellent candidates for the observation of SR. Indeed, we derive generic

SR equations from a polymer-stabilized ferroelectric liquid crystal (LC) cell, which is a typical soft

matter representative constituting one of the basic components in several electro-optic applications. We

generalize these equations further in order to study an even broader class of qualitatively different

systems, especially disclosing the influence of different types of static disorder and interaction ranges

amongst LC molecules on the SR response. We determine the required conditions for the observation

of SR in the examined system, and moreover, reveal that a random field type static disorder yields

qualitatively different responses with respect to random dilution, random bond and spin glass

universality classes. In particular, while the latter three decrease the level of dynamic disorder

(Gaussian noise) warranting the optimal response, the former evokes exactly the opposite effect, hence

increasing the optimal noise level that is needed to resonantly fine-tune the system’s response in

accordance with the weak deterministic electric field. These observations are shown to be independent

of the system size and range of interactions, thus implying their general validity and potentially wide

applicability also within other similar settings. We argue that soft matter systems might be particularly

adequate as a base for different SR-based sensitive detectors and thus potent candidates for additional

theoretical as well as experimental research in the presently outlined direction.
I. Introduction

When noise is introduced to nonlinear systems one can observe

a variety of interesting and counterintuitive phenomena.1–3

Perhaps the most prominent is the phenomenon of SR, where an

appropriate intensity of noise evokes the best correlation

between a weak deterministic stimulus and the response of

a nonlinear system.4–13 This contradicts intuitive reasoning that

suggests noise can only act destructively on system performance.

To observe the phenomenon of SR a nonlinear system must

contain the following three basic ingredients: i) an energetic

activation barrier (i.e. a threshold), ii) a weak coherent input (i.e.

periodic external forcing), and iii) a source of noise. These

conditions are very general indeed, enabling the observation of

SR in the most diverse circumstances ranging from neuronal and

brain functioning14–20 to the recurring occurrences of ice ages, as

comprehensively reviewed in the past.21–24 The SR was first

verified experimentally on an electronic circuit with a binary

switch,25 but later on many additional experimental findings were

reported, as for example in a bistable non-linear optical device.26

Directly linked to the subject of the present work are studies

focusing on noisy bistable oscillators,27,28 as well as studies that

consider coupled bistable systems29–33 within different settings of
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SR. The latter setup served also as a basis for the discovery of an

interesting effect of noise on an ensemble of coupled bistable

oscillators; namely the so-called array-enhanced SR.34,35

Thereby, Lindner et al. demonstrated that a linear coupling,

combined with noise and a weak periodic signal, can enhance

synchronization and global organization in a chain of over-

damped nonlinear oscillators. Notably, investigations of bistable

noisy systems remain vibrant to date, and in the last few years

several theoretical38–40 as well as experimental36,37 studies have

been performed that report on interesting new aspects of SR in

such systems. Furthermore, noise-supported signal propaga-

tion41–43 and the SR of collective variables with very large gains46

in arrays of bistable systems have been studied as well. Recently,

the scope of SR and related phenomena in coupled oscillators

shifted also to ensembles characterized with complex interaction

topologies, as constituted by small-world or scale-free

networks.44,45,47

Since soft matter systems48 evolve both in time and space, and

are in addition extremely susceptible to external perturbations, it

is rather remarkable that they have avoided being the subject of

investigations related to SR in the past. In particular, during the

last two decades the phenomenon of SR has been reported in the

most diverse circumstances, including semiconductor devices,49

magnetoelastic ribbons,50 superconducting resonators,51 inter-

cellular calcium wave dynamics,52 SQUID-based detectors for

weak magnetic fields,54 and sociological models.53 Moreover, the

SR effect has also been reported in chemical reactions, where it

has been shown that optimal noise intensities are able to enhance
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weak periodic56–59 as well as aperiodic60 signals, or even support

traveling waves in a spatially extended chemical medium.61

Recently, popular nanoscale systems have become associated

with SR as well. In particular, it has been shown that nano-

mechanical oscillators in a dynamic bistable state exhibit a more

controllable switching in the presence of noise.55

In the present article, we aim to extend the scope of SR also to

soft matter systems, considering a polymer-stabilized ferroelec-

tric (PSF) LC cell as a typical soft matter representative.

Although the phenomenon of SR is most commonly associated

with dynamic disorder or noise, soft matter systems, and indeed

real-life systems in general, are in addition characterized by

a certain degree of static disorder. This fact has recently been

addressed by Tessone et al.,62 who succeeded in showing that

static or quenched disorder can give rise to SR as well. Here we

examine the impacts of both static and dynamic disorder on the

phenomenon of SR, and demonstrate under which conditions it

can be observed in a PSFLC cell. More precisely, we consider

different origins of static disorder and show that a random field

type static disorder yields qualitatively different responses with

respect to random dilution, random bond and spin glass

universality classes. In particular, while there always exists an

optimal level of dynamic disorder, warranting the best correla-

tion between a weak periodic electric field and the response of the

PSFLC cell, the considered types of static disorder may

additionally enhance or deteriorate the SR. Random dilution,

random bond and spin glass universality classes decrease the

level of dynamic disorder warranting the optimal response,

whereas the random field evokes exactly the opposite effect,

hence increasing the optimal level of dynamic disorder that is

needed to resonantly fine-tune the system’s response in accor-

dance with the weak deterministic electric field. We additionally

test these findings on their robustness with respect to the system

size and range of interactions, and reveal that they are largely

independent of such particularities. We discuss that, due to their

extreme susceptibility to external perturbations and wide

applicability, soft matter systems might represent an interesting

environment for the development of SR-based sensitive

detectors, and moreover, that additional theoretical as well as

experimental research efforts in the direction outlined presently

seem justified to realize these potentials.

The remainder of this paper is organized as follows. In Section

II we present a generic dynamic equation giving rise to the SR

phenomenon and the simulation procedure to solve it. Section III

is devoted to the derivation of governing equations of the PSFLC

cell, whereas in Section IV we present the results. In particular,

we estimate analytically the influence of static disorder on the

system’s configuration, and numerically investigate the

combined influence of static and dynamic disorder on the SR.

The final section features the summary of presented results and

outlines possible applications of our findings.

II. Stochastic resonance: generic equations

We consider a system of N coupled bistable overdamped oscil-

lators, governed by the Langevin equations of the form

vsi

vt
¼ si � s3i þ J

X
j

�
sj � si

�
þ E þ

ffiffiffiffiffiffiffi
2D

p
xiðtÞ; (1)
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where si describes the state of the i-th oscillator, t is the dimen-

sionless time, the sum index j runs over the oscillators sj that are

coupled with si, J measures the coupling strength amongst the

oscillators, E¼ E0 cos(ut) is a weak periodic field oscillating with

the frequency u, whereas 2D is the variance of Gaussian noise

with zero mean and autocorrelation hxi(t)xj(k)i ¼ dijdtk. Eqn (1)

arguably provides a paradigmatic setup for different scenarios of

SR, either via the classic setup, or via variations of system size63 or

diversity.62 In the absence of deterministic forcing and noise each

oscillator is characterized by a double-well potential with minima

at si¼ s0¼�1, whereas a periodic field Ewith finite amplitude E0

> 0 modulates the double-well potential, potentially breaking the

reflection symmetry of the system. In the regime of our interest E0

is too weak to let the oscillators roll periodically from one

potential well into the other. Instead, the minima are alterna-

tively and asymmetrically pushed up and down, periodically

raising and lowering the potential barrier. By increasing D the

noise-induced hopping between the potential wells can become

synchronized with the frequencyu of the weak external field, thus

exhibiting the SR phenomenon.

To evaluate responses of the noisy system to the periodic field

E in dependence on D, we calculate the Fourier coefficients for

the mean field

S ¼ 1

N

X
i

si: (2)

Noteworthy is that the Fourier coefficients are proportional to

the (square of the) spectral power amplification,64 which is often

used as a measure for the quantification of SR. Here, the Fourier

coefficients Q are calculated according to the equations

Qsin ¼
u

pn

ð2pn=u
0

SðtÞ sinðutÞ dt;

Qcos ¼
u

pn

ð2pn=u
0

SðtÞ cosðutÞ dt;

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

sin þQ2
cos

p
;

(3)

where u is the frequency of the weak periodic field E and n is the

number of oscillation periods used.

III. Stochastic resonance in the PSFLC cell

In order to demonstrate an appropriate soft matter system that

can potentially exhibit SR, we start by considering a thermo-

tropic bistable surface stabilized ferroelectric (SSF) LC cell.65

The ferroelectric LC, exhibiting both translational and orienta-

tional (quasi) long-range order, is confined in a plan-parallel cell

as shown in Fig. 1. The translational order is characterized by

smectic layers that are stacked along the z-axis, and the normals

of the cell walls are parallel with the x-axis of the system. The

orientation ordering is described by the director field ~n, yielding

an average local orientation of LC molecules, where |~n| ¼ 1. The

tilt (also referred to as the cone) angle q ¼ arccos(~n$~v) between

the smectic layer normals ~n and ~v distinguishes between the

smectic A (SmA) and chiral smectic C (SmC*) ordering. The

SmA ordering, in which hqi ¼ 0, is commonly realized above the

critical temperature Tc, whereby h$i stands for the spatial

average. Below Tc the LC enters into a helicoidal SmC* ordering.
This journal is ª The Royal Society of Chemistry 2008



Fig. 1 The SSFLC cell and the geometry of the problem. LC molecules

are collected in smectic layers that are stacked along the z-axis. For d < p

the molecules are either tilted along the positive or the negative y-axis.

Consequently ~P is aligned along the negative or the positive x-axis,

respectively. The nail representation is used in order to show that LC

molecules are tilted in the (y, z) plane. Arrows attached to the ‘nails’ mark

the local polarization of molecules, whereas muddy gray lines in the

background roughly indicate the structure of the polymer network. The

weak periodic electric field ~E is introduced along the x-axis.
In a bulk sample hqi > 0 the direction of the tilt precesses as one

goes from one smectic layer to another. The resulting helicoidal

structure is characterized by the wave number q ¼ 2p/p, where p

stands for the pitch of the helix. Tilting of the molecules gives rise

to the in-plane spontaneous polarization ~P, which is in general

perpendicular to ~n and ~v, whereby due to symmetry reasons it

holds that ~P ¼ P~v � ~n.66 Therefore, in the bulk SmC* phase ~P

also forms a helix and the macroscopic polarization of the system

equals zero. The cell confinement can suppress the helicoidal

structure if the thickness d of the cell is less or comparable to p.

The resulting unwound SmC structure is on average homo-

geneously tilted along a single direction. In the case of isotropic

planar anchoring (i.e.molecules tend to lie in the confining plane

within which all directions are equivalent), the molecules tilt

either along the positive or the negative y-axis. We henceforth

refer to these configurations as Up and Down states, which are

separated by an energy barrier. Importantly, such a system thus

exhibits bistability. The resulting polarization is aligned either

along the positive or the negative x-axis, respectively. If a

periodic external electric field is applied along the x-axis, it

alternately favors the Up andDown configuration. If also a noisy

component is present, then all the three essential conditions for

the SR phenomenon listed in the Introduction are fulfilled.

We proceed by describing the bistable equilibrium structure in

the unwound SmC phase quantitatively in terms of the tilt angle q

and the polarization ~P. We consider the system depicted in Fig. 1

where p < d. The molecules are either in the Up or Down state,

i.e. ~n ¼ (0,|sinq|,cosq) and ~P ¼ (H|P|,0,0). We further apply an
This journal is ª The Royal Society of Chemistry 2008
external electric field ~E ¼ E0(cos(ut),0,0). We expand the cor-

responding free energy density f in terms of q and P. Following

Garoff and Meyer we obtain67

Df ¼ f � f0 ¼
a0ðT � T0Þq2

2
þ bq4

4

�CPqþ 2qP2

c30
� EPþ K

2
jVqj2þfw; ð4Þ

where f0 is the free energy density of the undistorted SmA phase,

a0, b and T0 are the mean-field material constants, C is the

piezoelectric coupling constant, 30 is the dielectric constant, c is

the electric susceptibility, K is the representative elastic constant

of the SmC phase, and fw(q) describes the free energy costs at the

LC–wall interface.

Minimization of fwith respect to P yields P¼ 30c(E + Cq). We

take this into account and introduce the following scaled

dimensionless quantities:

s ¼ q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b

a0ðTc � TÞ

s
, ~E0 ¼ E0C30c

�
b

a0ðTc � TÞ

�3=4

,

D~f ¼ Df
b

a2
0ðTc � TÞ2

, ~fw ¼ fw
b

a2
0ðTc � TÞ2

, ~V ¼ dV, and

J ¼ K

d2

b

a2
0ðTc � TÞ2

, where Tc ¼
C230c

a0

describes the second

order structural phase transition temperature for E ¼ 0. If

omitting the tildes, it follows Df ¼ fc + fe + ff + fw, where

fc ¼ � s2

2
þ s4

4
; (5)

fe ¼
J

2
jVsj2; (6)

ff ¼ �sE0 cos(ut). (7)

The condensation term fc enforces s¼ s0 ¼�1, the elastic term

fe penalizes deviations from a spatially homogeneous ordering,

and the term ff introduces the source of the coherent input signal.

We proceed by adopting a standard form of the dissipation free

energy term, neglect the fw contribution, and after discretization

we reproduce eqn (1), where si ¼ s(~ri). Finally, in a SSFLC cell,

the dynamic Gaussian noise xi(t) entering eqn (1) could be

produced by a randomly varying external electric field.

Next, we rewrite eqn (1) into a more general form

vsi

vt
¼ si � s3i þ

X
j

Jij
�
sj � si

�
þ E þ

ffiffiffiffiffiffiffi
2D

p
xiðtÞ þ siwi; (8)

where the quantities Jij and wi now introduce qualitatively

different origins of static disorder. The physical origin of these

contributions in systems of our interest is as follows. Standard

SSFLC cells are extremely susceptible to imperfections of the

confining walls. One can substantially improve their mechanical

stability by introducing a polymer network into the LC. The

resulting system is referred to as the PSFLC. For a low enough

concentration of the polymer the bistability is preserved. The

network introduces a kind of a bulk field. Its local impact could

be approximately modeled by the LC-polymer coupling term fw
��wis

2
i /2, giving rise to the siwi contribution in eqn (8). This term
Soft Matter, 2008, 4, 1861–1870 | 1863



introduces, due to the essentially random nature of the polymer

network, a certain degree of static randomness or disorder into

the system.68,69 Furthermore, the presence of the polymer can

give rise to spatially varying elastic interactions within the

system, resulting in spatially dependent coupling constants Jij.

Lastly, E ¼ E0 cos(ut) is now a generalized weak periodic field

with a dynamic random component approximated by the

Gaussian noise xi(t) with the same properties as in eqn (1).

Prior to examining the results, we further generalize eqn (8) in

order to investigate a variety of soft matter systems experiencing

qualitatively different origins of disorder. We consider influences

of random dilution (RD), random bond (RB), spin glass (SG),

and random field (RF) type of static disorder. By the RD type we

set Jij ¼ 0 at randomly chosen interactions with a probability g,

whereas at the remaining sites it holds Jij ¼ J. By the RB type we

allow Jij to vary randomly within the interval Jij ˛ [J � DJ, J],

where 0 < DJ < 2J. The case DJ ¼ 2J corresponds to the SG

universality class, where Jij exhibits random values within the

interval [�J, J]. By the RF type of static disorder a value of the

field wi is chosen randomly within the interval [�Dw, Dw].

Furthermore, we consider either short-range (interactions only

amongst the four nearest neighbors) or infinite-range (all-to-all

coupling) interactions Jij. In the latter case we assume that

a value of Jij is independent of the distance between the i-th and

j-th oscillator.

IV. Results

In what follows, we study the phenomenon of SR in the system

described by eqn (8). We first focus on the influence of different

types of static disorder via an analytical treatment of equilibrium

values of the i-th oscillator siwithin the ensemble. Afterwards, we

study numerically the combined influence of dynamic and static

disorder on the mean-field response of the studied soft matter

system.

A. Influence of static disorder

We estimate how different sources of static disorder modify the

bistable configuration enforced by the condensation term fc.

Since bistability is a key ingredient enabling the observation of

SR, these insights will help us to understand and interpret effects

of the joint impact of static and dynamic disorder that we are

going to present in the next subsection. In order to assert the

impact of static disorder on bistability, we treat disorder terms

(i.e. the Jij and wi contribution) as weak perturbations. More-

over, we neglect the dynamic disorder [Gaussian noise xi(t)],

switch off the periodic electric field E, and express si as

si ¼ s0 + xi, (9)

where s0 ¼ �1. Linearization of the statical part of eqn (8) with

respect to xi yields�2xi +
P

jJij(xj � xi) + wi(s0 + xi) ¼ 0.

For Jij ¼ 0 we obtain in the lowest approximation

xi � s0wi/2. (10)

Accordingly, we conclude that the presence of RF type

disorder of any strength modifies the equilibrium configuration

of si.
1864 | Soft Matter, 2008, 4, 1861–1870
To estimate the influence of random variations in Jij we set wi

¼ 0. For convenience we introduce the renormalized random

interaction coupling matrix J0ij as

J 0
ij ¼ Jij � dij

X
k

Jkj (11)

where dij is the Kronecker symbol. We further express xi in the

eigenbasis70,71 of the matrix J0ij

xi ¼
X
a

Aae
ðaÞ
i ; (12)

X
j

J 0
ije

ðaÞ
j ¼ Uae

ðaÞ
i ; (13)

where Ua are the eigenvalues, ei
(a) are the corresponding eigen-

vectors and Aa are the weight constants. The eigenvectors are

normalized according toX
i

e
ðaÞ
i e

ðbÞ
i ¼ dab: (14)

We expand the statical part of eqn (8) for E ¼ 0 including the

cubic term in xi, take into account eqns (12) and (13), multiply

the resulting equation by ei
(h), and sum it over the lattice sites. It

followsX
a;b;g

AaAbAgF
ðabghÞ
4 þ 3

X
a;b

AaAbF
ðabhÞ
3 þ AhðU� UhÞ ¼ 0; (15)

where

F
ðabghÞ
4 ¼

X
i

e
ðaÞ
i e

ðbÞ
i e

ðgÞ
i e

ðhÞ
i ;F

ðabhÞ
3 ¼

X
i

e
ðaÞ
i e

ðbÞ
i e

ðhÞ
i : (16)

Neglecting the coupling71 among different eigenmodes and

assuming F3
(h) ¼ 0, one obtains the equation for the h-th mode

amplitude

Ah
3F4

(h) + Ah(U � Uh) ¼ 0, (17)

where U ¼ 2. It follows Ah(Uh < U) ¼ 0 and

AhðUh.UÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Uh � U

F
ðhÞ
4

s
: (18)

The corresponding effective Hamiltonian Hh determining the

h-th eigenmode amplitude can be defined as

Hh ¼
A2

h

2
ðU� UhÞ þ

A4
h

4
F

ðhÞ
4 ; (19)

where U ¼ 2 plays the role of the generalized temperature. On

decreasing U the eigenmodes open via a continuous phase tran-

sition at U ¼ Uh and below Uh its amplitude is given by eqn (18).

It follows that the disorder in Jij can trigger structural changes

only for large enough disorder strengths, i.e. at least one eigen-

value must be larger than U. When departing from the bistable

solution preferred by fc only modes characterized by Uh > U are

thus present.

Note that in the derivation of eqn (18) we have assumed

that the eigenmodes do not overlap. This is partly justified

only for localized modes.71 These are expected for short-range
This journal is ª The Royal Society of Chemistry 2008



interactions in Jij andUh > 0. On average they appear at different

regions and consequently avoid overlapping. The response of the

system is in this case given by

si ¼ s0 þ
X
a

Aae
ðaÞ
i ; (20)

where only the modes withUa >U¼ 2 participate. The extended

modes thus appear only for Uh � 0.72

In case of long-range interactions in Jij the modes are

extended.73 For example, for infinite-range interactions and SG

type disorder the distribution of eigenvalues stays within the

interval Uh ˛ [�Umax, Umax] according to the symmetric Wigner

probability distribution72

PðUhÞ ¼
2

pUmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

max � U2
h

q
; (21)

where Umax stands for the maximal eigenvalue. Therefore,

a single mode is expected to dominate in xi, and this mode

hinders the opening of the remaining modes. Further, if F3
(h) s

0 then the modes would appear via a discontinuous transitions as

a function of U.

To illustrate the influence of static disorder and different

interaction ranges on xi configurations, we focus on the quantity

1/F4
(h), where F4

(h) is defined by eqn (16). It estimates the number

Nh of sites participating in the h-th mode, i.e. 1/F4
(h) � Nh. The

estimate follows from the normalization condition given by eqn

(14). We assume that all ‘open’ sites, characterized by xi
(h) s 0,
Fig. 2 The approximate mode size 1/F(h)
4 as a function of Uh. Type of disorder

SG, DJ ¼ 2J, short-range; (c) RB, DJ ¼ J, infinite-range; (d) SG, DJ ¼ 2J, in

This journal is ª The Royal Society of Chemistry 2008
are comparable in magnitude. Therefore |xi
(h)| � 1/a if site i is

opened, whereby a stands for a positive constant, but otherwise

xi
(h) ¼ 0. In eqn (14) the sum is restricted over Nh open sites,

resulting in Nh/a
2 ¼ 1. Consequently, |xi

(h)|�1/ONh and F(h)
4 ¼P

i(ei
(h))4 � 1/Nh. Non-localized (extended) modes are charac-

terized by Nh � N and localized by Nh � N.

In Fig. 2 we plot 1/F4
(h) � Nh as a function of mode eigen-

values Uh for N ¼ 1000. We consider the RB case with DJ ¼ J,

and the SG limit DJ ¼ 2J. The resulting 1/F4
(h) values are

shown for short- and infinite-range interactions in the top and

bottom panels, respectively. By short-range interactions the

modes are typically localized [in Fig. 2(a) and (b) Nh is typically

less than 10]. In contrast, by infinite-range interactions most

states are extended [characterized by Nh > 100, as shown in

Fig. 2(c) and (d)]. We further find that by increasing the value

of DJ, where Jij ˛ [J � DJ, J], the maximal value Umax

increases. According to the estimate given by eqn (16) the

modes can open if Umax > U ¼ 2. Our calculations suggest that

such modes are enabled only for DJ > J. Consequently, we find

that the disorder in Jij notably affects the SR phenomenon only

if DJ > J. Note that eqn (16) holds only for relatively weak

static disorders via Jij, and for the case that modes do not

strongly overlap.

We further show that the disorder introduced via the coupling

interaction Jij is unlikely to destroy the bistability enforced by the

condensation term. For this purpose we originate from eqn (8)

and set E ¼ 0, wi ¼ 0, and si ¼ 0. We express si as
and range of interactions are as follows: (a) RB, DJ ¼ J, short-range; (b)

finite-range. System size in all panels was N ¼ 1000.

Soft Matter, 2008, 4, 1861–1870 | 1865



Fig. 3 Temporal evolution of the mean-field response S of the system by

different levels of (dynamic) Gaussian noise D. (a) D ¼ 0.7, (b) D ¼ 0.9

and (c)D¼ 1.3. Gray lines depict the periodic driving (amplitude is scaled

to 1). In panel (b) the resonance condition is fulfilled, resulting in the

optimal correlation between the weak periodic driving and the response
si ¼ S + dsi, (22)

where dsi describes fluctuations around the mean field S of the

system. If the bistability is preserved, then S ¼ � |S|. In the

opposite case S ¼ 0. We sum the resulting equation over all

lattice sites, assume
1

N

X
i

vdsi

vt
� 1

N

X
i

dsi �
1

N

X
i

ds3i � 0, and

obtain the equation

S � S3 � 3SM ¼ 0, (23)

where M measures the strength of departures about the average:

M ¼ 1

N

X
i

ds2i : (24)

It follows that the bistability is preserved for M < 1/3, where

S ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3M

p
: (25)

Finally, within this subsection we address the condition where

the bistability is lost with eigenmodes of the matrix J0ij. From eqn

(22) and eqn (9) it follows dsi ¼ s0 � S + xi. The bistability is lost

when M ¼ 1/3 and S ¼ 0. With this in mind, using the definition

given by eqn (24) and expansion given by eqn (12), we obtain the

condition

1

N

X
m

A2
m þ 2S0

N

X
m

AmF
ðmÞ
1 � 1

N

X
m

A2
m ¼ �2=3; (26)

where the sum runs over the open modes, the amplitudes of

which are estimated by eqn (18). It is obvious that the condition

given by eqn (26) cannot be satisfied. Therefore, the static

disorder in the coupling strength cannot, on its own, destroy the

bistability.
of the system. Employed system parameters are: Jij ¼ J ¼ 4, wi ¼ 0, E0 ¼
0.04, u ¼ 0.01 and N ¼ 100.
B. Combined influence of static and dynamic disorder

In this subsection we analyze numerically the response of the

system in terms of the mean field S if both static and dynamic

disorder are introduced. We use periodic boundary conditions

for our simulations and consider short- and infinite-range

interactions in Jij. In the former case only the nearest neighbors

are coupled, whereas in the latter the coupling is independent of

the physical distance between the units. By considering both

short- and infinite-range couplings we take into account two

limiting cases of interactions that interpolate between the 3D

structures usually entailed within soft matter systems. Impor-

tantly though, we found the actual usage of 3D models prohib-

itive due to substantial computer resources that would be needed

to simulate them. We do, however, demonstrate that our results

are independent of the system size in Fig. 6, and thus should be

readily observed also in the thermodynamic limit.

We start by examining the temporal evolution of the mean-

field response S for three different levels of Gaussian noise D. As

the reference state we consider a configuration with Jij ¼ J ¼ 4 in

the absence of any additional static disorder and an infinite range

of interactions. Fig. 3 features the results. In panel (a) the noise

level is clearly to weak to assist the periodic field strong enough
1866 | Soft Matter, 2008, 4, 1861–1870
to induce flips between the two minima of the potential (note that

E0 ¼ 0.04 assures that E itself is too weak to induce the flips). In

sharp contrast, panel (c) depicts a heavily noisy response, lacking

a clear temporal structure that would indicate any particular

correlations with the weak deterministic driving. Only in panel

(b) is the correlation between S and the weak periodic field E

evident with the naked eye, and indeed, the SR phenomenon is

visually manifest in the examined soft matter system. To support

this visual assessment, we examine S evoked by different D via

the Fourier coefficients Q [see eqn (3)] that quantify the corre-

lation between S and E. Fig. 4 depicts a typical bell-shaped

dependence of Q, thus confirming that an intermediate level of

Gaussian noise is able to optimally assist the weak periodic

driving E to induce flips between the twominima of the potential.

This is the hallmark of the SR effect, which we thus demonstrate

in the examined soft matter system.

In order to distinguish impacts of different types of static

disorder on the SR resonance effect exemplified in Fig. 4, we

continue with examining the mean field responses S via the

Fourier coefficients Q. First, we consider the influence of
This journal is ª The Royal Society of Chemistry 2008



Fig. 4 SR in the examined system. By an intermediate value of D

(denoted by the dashed vertical line) the correlation of the mean-field

response S with the weak periodic driving E is maximal, resulting in

a bell-shaped dependence of Q. System parameters were the same as in

Fig. 3.

Fig. 5 Response of the system, quantified via Q [see eqn (3)], in dependence

disorder. Results are presented separately for short-range (left column) and

different Jij ¼ J; (b) RD; (c) RB; and (d) RF. In all panels the color profile is R

values of Q. The employed system size was N ¼ 100 and Q were evaluated ove

over 50 different realization of every type of static disorder. Where applicabl
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decreasing coupling strengths Jij ¼ J to obtain a reference for

further simulations. In particular, note that both the RD and RB

types of static disorder progressively lower the average coupling

strength �Jij as their magnitude increases, and thus the reference

simulation in which the interaction strength between all the

coupled oscillators J is gradually reduced may provide important

pointers for the understanding of the effect of RD and RB static

disorder. The resulting responses quantified via Q in dependence

on D and J are shown in Fig. 5(a) separately for short- and

infinite-range interactions. For J ¼ 4 the correlation of S with E

peaks at D ¼ Dr z 0.35 (short-range) and Dr z 0.9 (infinite-

range; see also Fig. 4), whereby the subscript r marks the reso-

nance value of D. In both cases the resonance peak shifts toward

lower values of D ¼ Dr as the coupling strength is reduced, and

moreover, an accompanying increase in peak values ofQ prior to

reaching J ¼ 0 can be inferred in case of infinite-range interac-

tions (the global maximum ofQ is obtained atD¼Dr¼ 0.11 and

J ¼ 0.17). At a glance, it can be observed that RD [Fig. 5(b)] and

RB [Fig. 5(c)] types of static disorder by infinite-range interac-

tions (right column) deliver qualitatively identical results as

obtained by the reference simulation [Fig. 5(a)]. Indeed, by
on the Gaussian noise level D as well as the type and strength of static

infinite-range interactions (right column). Rows depict: (a) impact of

GB linear (blue > green > yellow > red), blue depicting 0.0 and red 0.45

r n ¼ 1000 oscillation periods of E. In addition, all results were averaged

e, other parameters were the same as in Fig. 3.
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Fig. 6 Joint effects of RB-type static disorder and Gaussian noise in

dependence on the system size N by infinite-range interactions. (a)

Shaded outlines, representing Q > 0.18, of the resonance behavior

for different N. (b) Excerpts of SR depicted in panel (a) obtained by

DJ ¼ J. Importantly, the SR is preserved and saturates in magnitude

above N � 300.
increasing g (RD) or DJ (RB) the average coupling strength �Jij
decreases, which due to the fact that by infinite-range interac-

tions each unit experiences approximately the same coupling

with others, simply results in the same effect as if J was gradually

reduced equally for all units. Accordingly, in the right (b) and (c)

panels the optimal D ¼ Dr decreases as g and DJ increase, and

global maxima (across the whole 2D parameter space) of Q are

obtained prior to reaching the limits of the RD and RB univer-

sality class. Specifically, the global maxima of Q are obtained at

D ¼ Dr ¼ 0.11 and g ¼ 0.96 by the RD case, and by D ¼ Dr ¼
0.18 and DJ ¼ 7.1 by the RB case. Conversely, by short-range

interactions the individuality of couplings amongst units is more

pronounced, and accordingly, the reference simulation in the left

column of Fig. 5(a) bears less similarity with the impact triggered

by RD and RB types of static disorder, especially if compared to

infinite-range interactions. In case of short-range interactions the

RD and RB types of static disorder introduce effects that go

beyond a simple decrease in J. The main trend, however, remains

the same in that the resonance peak of Q shifts towards lower

values of D ¼ Dr as the magnitude of static disorder increases,

but nevertheless, the global maxima of Q are obtained by g ¼
0 and DJ ¼ 0. Moreover, substantial removal of links with

probability g by the RD case seems to have a rather profoundly

deteriorating effect on the maximally attainable peak value of Q.

Most notable, however, is the qualitatively different response

that is evoked by the RF type of static disorder depicted in

Fig. 5(d), which sets in irrespective of the range of interactions

since wi always has only a localized impact on each particular

unit. It can be inferred that by the RF type of static disorder the

resonance peak shifts toward higher values of D ¼ Dr as Dw

increases, and also, an accompanying decrease in peak values of

Q can be inferred (global maxima of Q are obtained at Dw ¼ 0).

This is significantly different from what we have observed by RD

and RB types of static disorder, especially so by infinite-range

interactions. The discrepancy can be explained by our preceding

separate treatment of effects of static disorder. In particular,

unlike variations in wi, disorder introduced via Jij does not

change the double well potential of si if si ¼ sj since such pairs are

preferred for a positive value of Jij, and hence the essential

bistability property for SR remains intact. On the other hand,

disorder introduced via wi directly influences the energy land-

scape experienced by si, and thus destroys bistability for large

enough Dw. This in turn explains the ever-increasing values of D

¼ Dr needed for a resonant response and the deteriorating peak

values of Q depicted in both panels of Fig. 5(d) as Dw increases.

Finally, we examine whether above results are qualitatively

independent of the system size. The latter is an important issue

since by soft matter systems the thermodynamic limit N / N

can in general be considered fulfilled. For the purpose of this

analysis we consider the RB type of static disorder as a repre-

sentative example (for other types of static disorder identical

results are obtained), and moreover, focus only on infinite-range

interactions as variations in system size do not influence the SR

in case of short-range interactions. Results for the full range of

DJ are presented in Fig. 6(a). Shaded are areas in the D � DJ

parameter space where Q > 0.18. Clearly, the SR is preserved as

N increases. To enable a better quantitative insight of the pres-

ervation of SR, we show in Fig. 6(b) excerpts of the resonant

behavior for DJ ¼ J. Indeed, it can be observed nicely that not
1868 | Soft Matter, 2008, 4, 1861–1870
only the combined effects of static and dynamic disorder are

preserved, but also that the resonance behavior saturates for

large enough N. This is in accordance with previously reported

results of Monte Carlo simulations on a simple Ising-type lattice

model,74 thus fully confirming the generality of our findings with

respect to variations in system size.
V. Summary

We studied the phenomenon of SR via variations of static and

dynamic disorder in a soft matter system. As a representative

example, we choose a polymer-stabilized ferroelectric LC cell,

which is an essential ingredient in several electro-optic applica-

tions. The cell’s thickness was considered shorter than the pitch

of the helix, which resulted in a bistable dynamics governing the

discretized equations of the LC configuration in the SmC phase

with qualitatively identical properties as exhibited by the para-

digmatic bistable overdamped oscillator. As the latter is a generic

model for SR, the observation of noise-enhanced correlation

between a weak periodic field and the PSFLC response could

thus be expected. Indeed, by applying a subthreshold electric

field E along the surface normal of the two plates that alterna-

tively favored the competing Up and Down configurations, we
This journal is ª The Royal Society of Chemistry 2008



were able to demonstrate the phenomenon of SR in a typical soft

matter system by measuring its mean-field response S.

More precisely, we focused on the combined influence of static

and dynamic disorder, whereby the former arises naturally due to

the random character of the polymer network that is introduced

into the LC in order to improve its mechanical stability. In

particular, the coupling between LC molecules can then no

longer be considered uniform because of induced local variations

in the effective temperature within the system, thus introducing

RD and RB types of static disorder, and because of the branched

polymer structure introducing RF-type disorder. Importantly,

we generalized the properties of the examined LC in order to

obtain broader insights into the behavior of qualitatively

different systems, which are however, governed by the same

generic equations. In addition to considering these three types of

static disorder, we also examined the system’s dynamics in

dependence on the system size as well as on local- and infinite-

range interactions. First, we showed analytically that static

disorders introduced via the coupling strength Jij (RD and RB)

and via the random field wi (RF) affect the system’s bistability in

qualitatively different ways. While the RF static disorder is very

effective in destroying the bistable character of the system even

by small magnitudes, the RD and RB types of static disorder fail

to have effects unless the level of randomness is large. We further

show that the range of interactions strongly affects the response

of the system with RD or RB type of disorder. These analytical

estimates were obtained by taking into account a system with no

dynamic disorder and relatively weak static disorder. Our

numerical simulations, where the combined influence of static

and dynamic disorder was taken into account, confirmed our

analytical estimates. While RD and RB types of static disorder

can be simplified mostly to decreasing coupling strengths Jij ¼ J

(with some differences emerging with respect to the range of

interactions amongst LC molecules), the RF-type disorder

induces a qualitatively different response. Particularly, RD and

RB (becomes SG in the maximal disorder limit) decrease the level

of dynamic disorder warranting the optimal response, whereas

the RF evokes exactly the opposite effect by increasing the

optimal D that is needed to resonantly fine-tune S in accordance

with E. These observations are shown to be independent of the

system size and largely independent also of the range of

interactions, which implies that they are generally valid and

potentially applicable beyond the presently employed setup.

Indeed, our study leads us to conclude that soft matter systems

are viable candidates for additional theoretical as well as exper-

imental research, potentially leading to sensitive detectors with

fortified capabilities due to the phenomenon of SR.
Acknowledgements

Matja�z Perc and Samo Kralj acknowledge support from the

Slovenian Research Agency (Grants Z1-9629 and J1-0155).
References

1 W. Horsthemke and R. Lefever, Noise-Induced Transitions, Springer-
Verlag, Berlin, 1984.

2 P. Hänggi and R. Bartussek, Nonlinear Physics of Complex Systems,
Springer, New York, 1999.
This journal is ª The Royal Society of Chemistry 2008
3 F. Sagués, J. M. Sancho and J. Garcı́a-Ojalvo, Rev. Mod. Phys., 2007,
79, 829.

4 R. Benzi, A. Sutera and A. Vulpiani, J. Phys. A, 1981, 14, L453.
5 C. Nicolis and G. Nicolis, Tellus, 1981, 33, 225.
6 A. Longtin, J. Stat. Phys., 1993, 70, 309.
7 A. Neiman and W. Sung, Phys. Lett. A, 1996, 223, 341.
8 S. G. Lee and S. Kim, Phys. Rev. E, 1999, 60, 826.
9 H. E. Plesser and T. Geisel, Neurocomputing, 2001, 38–40, 307.
10 K. Miyakawa, T. Tanaka and H. Isikawa, Phys. Rev. E, 2003, 67,

066206.
11 I. Goychuk, P. Hänggi, J. L. Vega and S. Miret-Artés, Phys. Rev. E,

2005, 71, 061906.
12 R. Ray and S. Sengupta, Phys. Lett. A, 2006, 353, 364.
13 C. Schmitt, B. Dybiec, P. Hänggi and C. Bechinger, Europhys. Lett.,

2006, 74, 937.
14 J. K. Douglass, L. Wilkens, E. Pantazelou and F. Moss,Nature, 1993,

365, 337.
15 B. J. Gluckman, T. I. Netoff, E. J. Neel, W. L. Ditto,M. L. Spano and

S. J. Schiff, Phys. Rev. Lett., 1996, 77, 4098.
16 D. F. Russell, L. A. Wilkens and F. Moss, Nature, 1999, 402, 291.
17 K. Kitajo, D. Nozaki, M. Ward and Y. Yamamoto, Phys. Rev. Lett.,

2003, 90, 218103.
18 C. S. Zhou and J. Kurths, Chaos, 2003, 13, 401.
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