
SoftwareX 9 (2019) 199–204

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

Evoplex: A platform for agent-basedmodeling on networks
Marcos Cardinot a,∗, Colm O’Riordan a, Josephine Griffith a, Matjaž Perc b,c,d

a Discipline of Information Technology, National University of Ireland, Galway, Ireland
b Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-000 Maribor, Slovenia
c CAMTP – Center for Applied Mathematics and Theoretical Physics, University of Maribor, Mladinska 3, SI-2000 Maribor, Slovenia
d Complexity Science Hub Vienna, Josefstädterstraße 39, A-1080 Vienna, Austria

a r t i c l e i n f o

Article history:
Received 22 October 2018
Received in revised form 24 January 2019
Accepted 25 February 2019

Keywords:
Agent-based modeling
Complex system
Self-organization
Coevolution
Network science
Evolutionary game theory

a b s t r a c t

Agent-based modeling and network science have been used extensively to advance our understanding
of emergent collective behavior in systems that are composed of a large number of simple interacting
individuals or agents. With the increasing availability of high computational power in affordable
personal computers, dedicated efforts to develop multi-threaded, scalable and easy-to-use software
for agent-based simulations are needed more than ever. Evoplex meets this need by providing a
fast, robust and extensible platform for developing agent-based models and multi-agent systems on
networks. Each agent is represented as a node and interacts with its neighbors, as defined by the
network structure. Evoplex is ideal for modeling complex systems, for example in evolutionary game
theory and computational social science. In Evoplex, the models are not coupled to the execution
parameters or the visualization tools, and there is a user-friendly graphical interface which makes it
easy for all users, ranging from newcomers to experienced, to create, analyze, replicate and reproduce
the experiments.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version v0.2.1
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX_2018_211
Legal Code License Apache 2.0 (EvoplexCore) and GPLv3 (EvoplexGUI)
Code versioning system used Git
Software code languages, tools, and services used C++, OpenGL, Qt and CMake.
Compilation requirements, operating environments & dependencies C++ compiler (e.g., GCC, Clang or MSVC), Qt Framework and CMake.
If available Link to developer documentation/manual https://evoplex.org/api
Support email for questions evoplex@googlegroups.com

Software metadata

Current software version v0.2.1
Permanent link to executables of this version https://github.com/evoplex/evoplex/releases
Legal Software License GPLv3
Computing platforms/Operating Systems Linux, OS X, Microsoft Windows and Unix-like
Installation requirements OpenGL 2.0+
If available, link to user manual - if formally published include a reference to the publication
in the reference list

https://evoplex.org/docs

Support email for questions evoplex@googlegroups.com

∗ Corresponding author.
E-mail address: marcos.cardinot@nuigalway.ie (M. Cardinot).

1. Motivation and significance

Agent-based modeling (ABM) has been used as a framework
to simulate complex adaptive systems (CAS) in a wide range of

https://doi.org/10.1016/j.softx.2019.02.009
2352-7110/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2019.02.009
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2019.02.009&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX_2018_211
https://evoplex.org/api
mailto:evoplex@googlegroups.com
https://github.com/evoplex/evoplex/releases
https://evoplex.org/docs
mailto:evoplex@googlegroups.com
mailto:marcos.cardinot@nuigalway.ie
https://doi.org/10.1016/j.softx.2019.02.009
http://creativecommons.org/licenses/by/4.0/


200 M. Cardinot, C. O’Riordan, J. Griffith et al. / SoftwareX 9 (2019) 199–204

domains such as life sciences, ecology and social sciences [1–7].
Those systems are composed of a number of interacting agents
each of whom have a defined set of attributes and can exhibit spe-
cific behaviors based on their interactions with the environment
and the other agents [8]. Research in this field usually aims to
explore how small changes in individual behavior can both affect
and promote collective behavior throughout the system [9–11].

Given the flexibility of the ABM approach and the increasing
computing power of cheap personal computers, efforts to develop
reusable, flexible, multi-threaded, scalable and user-friendly soft-
ware are more than ever required by the scientific community.
However, despite the high number of existing ABM toolkits and
platforms available [12], due to the heterogeneity and diversity of
the areas of research and application domains, most researchers
still prefer to implement individual and domain-specific, special-
ized software from scratch, which is usually not publicly released.
Many researchers write MATLAB or Mathematica based scripts
which, although being complete and well-known scientific plat-
forms, are neither free nor open-source, which therefore reduces
the transparency and re-usability of the developed models [13].

In fact, implementing a highly specialized solution from scratch
is time-consuming, complex and error-prone. Many projects try
to overcome this by implementing a toolkit or platform for a
general purpose problem domain. For instance, some projects
such as NetLogo [14] and GAMA [15] succeed in providing generic
and reusable software; however, they require the user to learn
their specific programming language. A wide range of the ABM
solutions including MASON [16] and Repast [17] are written in
Java [18], which make them cross-platform and usually faster
than some Python or JavaScript alternatives like Mesa [19] and
AgentBase [20]. However, they usually require modelers to be
highly proficient in the language or they have critical scalability
issues. Overall, the main issues with some existing software in-
clude the use of old/deprecated technologies, not following state
of the art in software engineering, developing single-threaded
applications and not being community-friendly.

Furthermore, despite being a common strategy in the field,
many ABM projects start with the promising and challenging in-
tention of developing powerful software to meet any requirement
in the field, from simple cellular automaton models to complex
and realistic geographical information science (GIS) models. Un-
fortunately, this promising approach usually results in making the
code base very complex and hard to both optimize and maintain.
In reality, given the small size of the development teams, there is
no best strategy for all scenarios, and the user choice is usually
guided by their familiarity with the languages or technologies
used in the software. In this way, defining a clear and focused
scope can help solve those issues.

Thus, in this paper we present Evoplex, a cross-platform, free
and open-source software which aims to mitigate the issues
outlined by providing a fast and fully modular ABM platform for
implementing and analyzing models which impose an explicit
graph-theoretical approach, i.e., the agents are represented as
nodes (or vertices) and edges (or links) represent connections
between agents.

2. Software description

Evoplex is a fast, robust and extensible platform for develop-
ing agent-based models and multi-agent systems on networks.
Here, each agent is represented as a node in the network and is
constrained to interact only with its neighbors, which are linked
by edges in the network. Although not limited to a particular do-
main, Evoplex is ideal for tackling problems associated with evo-
lutionary computation, complex adaptive systems, evolutionary
game theory and cellular automata.

As shown in Fig. 1, the Evoplex workflow is very straight-
forward and intuitive. The engine processes projects as inputs.
A project is a plain table (csv file) where the experiments are
listed along the rows, and the inputs to each experiment are
placed along the columns. An experiment is defined by a set
of parameter settings (inputs) necessary to perform one trial
(simulation) and (optionally) the required data outputs, which
can be the result of some statistical function and/or the state of
the set of nodes/edges for each time step. Each experiment can
run for one or more trials, i.e., repeat the same experiment using
different pseudo-random generator seeds. The strategy of having
the projects defined in plain text files aims to make it easier
for users to replicate and reproduce their results. Furthermore, it
allows newcomers to interact with the models without requiring
any programming skills.

We provide a user-friendly and interactive graphical user in-
terface (GUI) to allow for creating, opening, running and saving
projects. Also, the GUI provides many useful tools including in-
teractive graph and grid views. Moreover, Evoplex allows several
experiments to run at the same time. These are automatically
distributed in parallel across multiple threads.

2.1. Software architecture

Evoplex is simple, user-friendly and was built with perfor-
mance in mind from the start. It is cross-platform and runs on
every major platform, i.e., Linux, Microsoft Windows, and MacOS.
Evoplex is developed in modern C++ 14, based on Qt, which is
one of the most popular and successful C++ frameworks available
to date. Moreover, Evoplex includes CMake scripts to ease the
compilation and setup from its source code.

The Evoplex application bundles three main open-source com-
ponents: the EvoplexCore library, the EvoplexGUI library and a
collection of plugins (example models and graph generators). The
EvoplexCore library is available under the Apache 2.0 License,
which is permissive, free and commercially friendly. The Evo-
plexGUI library is available under the GNU GPLv3 license, which is
also free but is conditioned on making the source code of licensed
works and modifications available.

Following a common practice in software engineering, the
Evoplex architecture is guided by a fully modular approach. The
core component, EvoplexCore, splits its implementation into both
private and public Application Programming Interfaces (APIs). The
private API is intended for internal use only and is where the sim-
ulations will actually occur; it is responsible for managing the I/O
operation, parsing inputs, handling the CPU threads and memory,
loading and creating instances of plugins and others. The public
API exposes all the tools and services needed to develop a plugin,
which can be either a model or a graph generator.

Fig. 2 shows a simplified overview of the overall software
architecture, which is composed of four major layers: the kernel
(i.e., EvoplexCore library), the plugins, the data and the appli-
cations layers. The current version of the Evoplex application
layer includes EvoplexGUI, which implements a graphical user
interface on top of EvoplexCore (kernel) to provide a number of
interactive and user-friendly tools. Note that as the kernel is
completely independent of the applications layer, Evoplex can
be distributed with different user-interfaces but share the same
engine (kernel). For instance, one may want to implement an
EvoplexCLI application to perform simulations via command-line,
or an EvoplexWeb application to provide visualization tools on a
web browser.

In Evoplex, every model or graph is a plugin and is compiled
independently of the main application. The creation of plugins
is very straightforward and requires a very basic knowledge of
C++. Given the Evoplex approach of not coupling the visualization



M. Cardinot, C. O’Riordan, J. Griffith et al. / SoftwareX 9 (2019) 199–204 201

Fig. 1. Simplified overview of the user workflow.

Fig. 2. Simplified illustration of the software architecture.

tools nor inputs/outputs to the model, the models’ code is usually
very simple and short. We provide a few examples of plugins of
easy reuse and customization.1 In summary, a plugin comprises
four files: CMakeLists.txt which does not need to be changed by
the modeler and is just a CMake script to ease the compilation
process and make it portable across different compilers and IDEs,
the plugin.cpp (source) and plugin.h (header) files where the mod-
eler implements the model’s algorithm, and metadata.json which
holds the definition of all the attributes of the model.

Moreover, Evoplex uses automated Continuous Integration (CI)
to make sure that the code base works as expected and to allow
early detection of problems. After every new commit, the CI sys-
tem automatically builds Evoplex from the source code, executes
regression tests, unit-tests and static code analysis across a range
of different versions/distributions of the supported platforms,
i.e., Linux, Microsoft Windows, and MacOS.

2.2. Software functionalities

The Evoplex application comes with a user-friendly and intu-
itive GUI that allows loading and unloading of plugins at runtime
and provides a bunch of widgets and tools to allow for the
creation and running of experiments and for analyzing (or visu-
alizing) their outputs. The main tools and widgets are described
below:

1 https://evoplex.org/docs/example-plugins.

• Project View: As shown in Fig. 3, when opening a project,
all experiments are listed in a table which is dynamic and
customizable and allows running, pausing and queuing mul-
tiple experiments at the same time. When running the ex-
periments, Evoplex automatically manages the available re-
sources to run them as fast as possible (in parallel) and use
as little memory as possible.

• Experiment Designer: This widget is displayed beside the
Project View in Fig. 3 and allows creating, removing and
editing of experiments.

• Nodes Generator: This tool can be accessed in the Exper-
iment Designer and provides handy functions to ease the
generation of the initial set of nodes.

• Experiment View: This widget is opened when the user
double-clicks on an experiment in the Project View. It al-
lows for the opening of multiple visualization tools at the
same time, which can be set to show different trials of the
same experiment. For instance, given an experiment with
a stochastic model which runs for 10 trials; the user may
want to visualize the behavior of the trials side by side to
investigate the effects of randomness over time.

• Graph/Grid View: Evoplex provides both graph (nodes and
edges — Fig. 4) and grid (cells) views. Those views allow
zooming in and out, exporting nodes/edges as a text file,
taking screenshots, selecting a node to inspect and change

https://evoplex.org/docs/example-plugins


202 M. Cardinot, C. O’Riordan, J. Griffith et al. / SoftwareX 9 (2019) 199–204

Fig. 3. Screenshot of Evoplex 0.2.1 showing the Project View and the Experiment Designer tools.

Fig. 4. Screenshot of Evoplex 0.2.1 showing the Experiment View docking two instances of the Graph View at different positions.

the state of its attributes and others. Also, it allows chang-
ing the nodes/edges size and choosing which attribute and
colormap will be represented in the nodes/edges.

Differing from most of the other ABM solutions (e.g., NetL-
ogo [14], MASON [16] and GAMA [15]), in Evoplex, the widgets
are not statically coupled to the model plugin. That is, the model
plugin only defines the entities’ attributes and implements the
algorithm to describe the nodes’ (agents) behavior for each time
step. Then, at runtime and not requiring any programming skill,
the users have the freedom to decide which widgets they want to
open and where they want to place them. Also, all widgets can be
detached from the main window, enabling users to open different
views in multiple monitors or attach them at different positions
and sizes in the screen.

3. Illustrative examples

In order to illustrate the use of Evoplex, we consider an im-
plementation of the widely known model of a spatial prisoner’s

dilemma (PD) game proposed by Nowak & May in 1992 [21].
In the PD game, agents can be either cooperators or defectors,
and receive a fixed payoff based on a pairwise interaction. That
is, given two agents, if both are cooperators, both get a reward
R = 1; if both are defectors, both get a punishment P = 0; if a
cooperator plays with a defector, the cooperator receives S = 0,
and the defector receives T (temptation to defect) [22].

In this model, agents (nodes) are placed in a square grid,
where, in each round: every node accumulates the payoff ob-
tained by playing the PD game with all its immediate neighbors
and itself; then, each agent copies the strategy of the best per-
forming agent in its neighborhood, including itself. Note that the
model’s source code is also freely available online2 under the MIT
License terms.

Fig. 5 shows a screenshot of an experiment created with the
Experiment Designer tool, using an implementation of the PD
model in Evoplex. To reproduce this output, run the experiment
for one step, open the Grid View and place a single defector

2 https://github.com/evoplex/model-prisonersDilemma.

https://github.com/evoplex/model-prisonersDilemma


M. Cardinot, C. O’Riordan, J. Griffith et al. / SoftwareX 9 (2019) 199–204 203

Fig. 5. In this experiment, the model (prisonersDilemma) is set with a temptation to defect equal to 1.8; the graph is initialized with a single defector (strategy = 1)
at the center of a 99 × 99 squareGrid with periodic boundary conditions, fully populated with cooperators (strategy = 0), undirected edges and von Neumann
neighborhood; the simulation is fed with a pseudo-random generator seed equal to 0 (which does not make any difference in this fully deterministic model), and is
set to run for a maximum of 1000 time steps for only one trial; finally, it also stores the frequency of each type of strategy over time. In the Grid View, the colors
blue, red, green and yellow corresponds to cooperators, defectors, new cooperators and new defectors respectively (for interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article).

(strategy = 1) in the middle of the grid. Then, when running
the experiment for more steps, it is possible to observe the
emergence of chaotically changing spatial patterns as reported by
Nowak & May [21].

4. Impact

Evoplex is intended to address research whose methodology
comprises a simulation-based approach to evolve outcomes of
populations of autonomous and interacting agents. It has been
used to support research in a number of areas, including spatial
game theory and evolutionary game theory [1,23,24]. In those
scenarios, agents are described in terms of graph theory, i.e., a
graph (network) consisting of a set of nodes (agents) and edges
(agents’ connections).

Despite having a few options of agent-based modeling (ABM)
software available, none of them are really suitable for this area
of research. Beyond the issues mentioned in Section 1, most
of the existing simulators have very limited performance and
are unable to handle the complexity of the models which are
investigated at present, e.g., coevolutionary models with a large
number of agents. Thus, one of the main impacts and contribu-
tions of Evoplex to this field of research is to provide an easy-
to-use and high-performance platform for simulating large-scale
experiments.

Moreover, another recurring issue with existing ABM software
is that they are designed to run and analyze one experiment at
a time. However, research in the field usually needs to explore
the outcomes of large populations for a wide range of parameter
settings, which in many cases require many Monte Carlo steps
to converge. In this case, the user needs to modify the model’s
source code or write a script on top of it to automate the execu-
tion of the experiments, which will usually run in a single thread,
one at a time. Some projects like FLAME [25] and OpenMOLE [26]
succeeded in allowing efficient parallel processing, but their use
and configuration are not straightforward. Thus, in those cases,
we observed that for any small interaction with the model, the
user ends up having to change the code/script back and forth very

often, which is both error prone and difficult for non-experienced
users.

Evoplex changes the paradigm of ABM for graphs by allowing
nodes and edges to be independent entities. Thus, given a set
of nodes (agents), the user can easily investigate how changes
in the topology may affect the population’s behavior (and vice
versa) without touching the source code or changing the model.
Also, the robust and multi-threaded engine combined with the
user-friendly GUI makes it easier for users to share, reproduce,
replicate and analyze the experiments. Evoplex is free, non-profit
and is fully open-source with a permissive license, allowing for
both commercial and academic use.

5. Conclusions

We have presented Evoplex, a flexible, fast and multi-threaded
platform for agent-based modeling imposing an explicit graph-
theoretical approach. We discussed that, different to other soft-
ware, in Evoplex, the models are not coupled to the execution
parameters nor the visualization tools. Also, it provides a user-
friendly GUI which makes it easy for all users, ranging from
newcomers to experienced, to create, analyze, replicate and re-
produce experiments. As an open-source project, we encourage
users to provide feedback, share models and contribute to im-
proving the software. Evoplex is an ever-evolving project, and
future work will involve adding support for multilayer networks,
as well as implementing more plugins, and developing more
visualization widgets for the GUI.

Acknowledgments

This work was supported by the National Council for Scientific
and Technological Development (CNPq-Brazil) (Grant 234913/
2014-2), and by the Slovenian Research Agency, Slovenia (Grants
J4-9302, J1-9112 and P1-0403).

Competing interests

The authors declare no competing interests.



204 M. Cardinot, C. O’Riordan, J. Griffith et al. / SoftwareX 9 (2019) 199–204

References

[1] Cardinot M, Griffith J, O’Riordan C. A further analysis of the
role of heterogeneity in coevolutionary spatial games. Physica A
2018;493:116–24.

[2] Filatova T, Verburg PH, Parker DC, Stannard CA. Spatial agent-based models
for socio-ecological systems: Challenges and prospects. In: Thematic issue
on spatial agent-based models for socio-ecological systems. Environ Model
Softw 2013;45:1–7. http://dx.doi.org/10.1016/j.envsoft.2013.03.017.

[3] Grimm V, Revilla E, Berger U, Jeltsch F, Mooij WM, Railsback SF,
Thulke HH, Weiner J, Wiegand T, DeAngelis DL. Pattern-oriented mod-
eling of agent-based complex systems: lessons from ecology. Science
2005;310(5750):987–91. http://dx.doi.org/10.1126/science.1116681.

[4] Bonabeau E. Agent-based modeling: Methods and techniques for
simulating human systems. Proc Natl Acad Sci 2002;99(suppl 3):7280–7.

[5] Paulin J, Calinescu A, Wooldridge M. Agent-based modeling for complex
financial systems. IEEE Intell Syst 2018;33(2):74–82. http://dx.doi.org/10.
1109/MIS.2018.022441352.

[6] Khan MM, Tran-Thanh L, Yeoh W, Jennings NR. A near-optimal node-to-
agent mapping heuristic for GDL-based DCOP algorithms in multi-agent
systems. In: Proceedings of the 17th International Conference on Au-
tonomous Agents and MultiAgent Systems, AAMAS ’18. Richland, SC:
International Foundation for Autonomous Agents and Multiagent Systems;
2018, p. 1604–12.

[7] Casado-Vara R, González-Briones A, Prieto J, Corchado JM. Smart contract
for monitoring and control of logistics activities: pharmaceutical utilities
case study. In: Graña M, López-Guede JM, Etxaniz O, Herrero Á, Sáez JA,
Quintián H, Corchado E, editors. International Joint Conference SOCO’18-
CISIS’18-ICEUTE’18. Cham: Springer International Publishing; 2019, p.
509–17.

[8] Miller JH, Page SE. Complex adaptive systems: An introduction to com-
putational models of social life, vol. 17. Princeton university press;
2009.

[9] Sun Z, Lorscheid I, Millington JD, Lauf S, Magliocca NR, Groeneveld J,
Balbi S, Nolzen H, Müller B, Schulze J, Buchmann CM. Simple or com-
plicated agent-based models? A complicated issue. Environ Model Softw
2016;86:56–67. http://dx.doi.org/10.1016/j.envsoft.2016.09.006.

[10] Macal C, North M. Tutorial on agent-based modelling and simulation. J
Simul 2010;4(3):151–62. http://dx.doi.org/10.1057/jos.2010.3.

[11] Gotts N, Polhill J, Law A. Agent-based simulation in the study of social
dilemmas. Artif Intell Rev 2003;19(1):3–92. http://dx.doi.org/10.1023/A:
1022120928602.

[12] Nikolai C, Madey G. Tools of the trade: A survey of various agent based
modeling platforms. J Artif Societies Soc Simul 2009;12(2):2.

[13] Perkel JM. A toolkit for data transparency takes shape. Nature
2018;560(7719):513–5.

[14] Tisue S, Wilensky U. Netlogo: A simple environment for modeling com-
plexity. In: International conference on complex systems, vol. 21; 2004. p.
16–21.

[15] Grignard A, Taillandier P, Gaudou B, Vo DA, Huynh NQ, Drogoul A. GAMA
1.6: advancing the art of complex agent-based modeling and simulation.
In: Boella G, Elkind E, Savarimuthu BTR, Dignum F, Purvis MK, editors.
PRIMA 2013: Principles and Practice of Multi-Agent Systems. Berlin,
Heidelberg: Springer Berlin Heidelberg; 2013, p. 117–31.

[16] Luke S, Simon R, Crooks A, Wang H, Wei E, Freelan D, Spagnuolo C,
Scarano V, Cordasco G, Cioffi-Revilla C. The MASON simulation toolkit: past,
present, and future. In: Multiagent-based simulation workshop (MABS) at
AAMAS; 2018. p. 1–12.

[17] North MJ, Collier NT, Ozik J, Tatara ER, Macal CM, Bragen M, Sydelko P.
Complex adaptive systems modeling with Repast Simphony. Complex
Adapt Syst Model 2013;1(1):3. http://dx.doi.org/10.1186/2194-3206-1-3.

[18] Tobias R, Hofmann C. Evaluation of free Java-libraries for social-scientific
agent based simulation. J Artif Societies Soc Simul 2004;7(1).

[19] Masad D, Kazil J. MESA: an agent-based modeling framework. In: Pro-
ceedings of the 14th Python in Science Conference, SCIPY 2015; 2015. p.
53–60.

[20] Wiersma W. Agentbase: agent based modeling in the browser. In: Jager W,
Verbrugge R, Flache A, de Roo G, Hoogduin L, Hemelrijk C, editors. Ad-
vances in Social Simulation 2015. Cham: Springer International Publishing;
2017, p. 451–5.

[21] Nowak MA, May RM. Evolutionary games and spatial chaos. Nature
1992;359(6398):826–9.

[22] Nowak MA, Sigmund K. Evolutionary dynamics of biological games. Science
2004;303(5659):793–9. http://dx.doi.org/10.1126/science.1093411.

[23] Cardinot M, Griffith J, O’Riordan C, Perc M. Cooperation in the spa-
tial prisoner’s dilemma game with probabilistic abstention. Sci Rep
2018;8(1):14531. http://dx.doi.org/10.1038/s41598-018-32933-x.

[24] Cardinot M, O’Riordan C, Griffith J. The impact of coevolution and absten-
tion on the emergence of cooperation. In: Merelo JJ, Melício F, Cadenas JM,
Dourado A, Madani K, Ruano A, Filipe J, editors. Computational Intelligence:
International Joint Conference, IJCCI 2016 Porto, Portugal, November 9–11,
2016 Revised Selected Papers. Cham: Springer International Publishing;
2019, p. 105–22.

[25] Kiran M, Richmond P, Holcombe M, Chin LS, Worth D, Greenough C.
FLAME: simulating large populations of agents on parallel hardware
architectures. In: Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems. International Foundation for
Autonomous Agents and Multiagent Systems; 2010, p. 1633–6.

[26] Reuillon R, Leclaire M, Rey-Coyrehourcq S. Openmole, a workflow engine
specifically tailored for the distributed exploration of simulation models.
Future Gener Comput Syst 2013;29(8):1981–90.

http://refhub.elsevier.com/S2352-7110(18)30243-7/sb1
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb1
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb1
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb1
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb1
http://dx.doi.org/10.1016/j.envsoft.2013.03.017
http://dx.doi.org/10.1126/science.1116681
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb4
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb4
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb4
http://dx.doi.org/10.1109/MIS.2018.022441352
http://dx.doi.org/10.1109/MIS.2018.022441352
http://dx.doi.org/10.1109/MIS.2018.022441352
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb6
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb6
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb6
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb6
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb6
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb6
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb6
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb6
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb6
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb6
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb6
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb7
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb7
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb7
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb7
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb7
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb7
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb7
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb7
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb7
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb7
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb7
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb8
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb8
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb8
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb8
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb8
http://dx.doi.org/10.1016/j.envsoft.2016.09.006
http://dx.doi.org/10.1057/jos.2010.3
http://dx.doi.org/10.1023/A:1022120928602
http://dx.doi.org/10.1023/A:1022120928602
http://dx.doi.org/10.1023/A:1022120928602
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb12
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb12
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb12
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb13
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb13
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb13
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb15
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb15
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb15
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb15
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb15
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb15
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb15
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb15
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb15
http://dx.doi.org/10.1186/2194-3206-1-3
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb18
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb18
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb18
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb20
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb20
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb20
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb20
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb20
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb20
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb20
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb21
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb21
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb21
http://dx.doi.org/10.1126/science.1093411
http://dx.doi.org/10.1038/s41598-018-32933-x
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb24
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb24
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb24
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb24
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb24
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb24
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb24
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb24
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb24
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb24
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb24
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb25
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb25
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb25
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb25
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb25
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb25
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb25
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb25
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb25
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb26
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb26
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb26
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb26
http://refhub.elsevier.com/S2352-7110(18)30243-7/sb26

	Evoplex: A platform for agent-based modeling on networks
	Motivation and significance
	Software description
	Software architecture
	Software functionalities

	Illustrative examples
	Impact
	Conclusions
	Acknowledgments
	Competing interests
	References


