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Abstract Nonlinear oscillatory systems, playing a major

role in biology, do not exhibit harmonic oscillations.

Therefore, one might assume that the average value of any

of their oscillating variables is unequal to the steady-state

value. For a number of mathematical models of calcium

oscillations (e.g. the Somogyi–Stucki model and several

models developed by Goldbeter and co-workers), the

average value of the cytosolic calcium concentration (not,

however, of the concentration in the intracellular store)

does equal its value at the corresponding unstable steady

state at the same parameter values. The average value for

parameter values in the unstable region is even equal to the

level at the stable steady state for other parameter values,

which allow stability. This holds for all parameters except

those involved in the net flux across the cell membrane. We

compare these properties with a similar property of the

Higgins–Selkov model of glycolytic oscillations and two-

dimensional Lotka–Volterra equations. Here, we show that

this equality property is critically dependent on the fol-

lowing conditions: There must exist a net flux across the

model boundaries that is linearly dependent on the con-

centration variable for which the equality property holds

plus an additive constant, while being independent of all

others. A number of models satisfy these conditions or can

be transformed such that they do so. We discuss our results

in view of the question which advantages oscillations may

have in biology. For example, the implications of the

findings for the decoding of calcium oscillations are out-

lined. Moreover, we elucidate interrelations with metabolic

control analysis.
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Introduction

Nonlinear oscillations play an important role in many bio-

logical processes (cf. Goldbeter 1996; Heinrich and

Schuster 1996; Hofbauer and Sigmund 1998). For example,

oscillations in the concentration of intracellular calcium

ions are of relevance in regulating several cellular pro-

cesses. Since the 1980s, Ca2+ oscillations are the subject of

intense experimental (e.g. Woods et al. 1986; Berridge et

al. 1998; Dupont et al. 2000) and theoretical studies (cf.

Goldbeter 1996; Schuster et al. 2002; Falcke 2004). In

several types of non-excitable cells such as hepatocytes,

oocytes and pancreatic acinar cells, these oscillations occur

due to an exchange of Ca2+ between the cytosol and intra-

cellular stores such as the endoplasmic reticulum (ER).

Ca2+ oscillations are often triggered by the binding of an
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external agonist, such as some hormones or ATP, resulting

in the formation of inositol 1,4,5-trisphosphate (IP3). IP3

binds to Ca2+ channels in the ER, promoting the release of

Ca2+ from this internal store. This process is furthermore

amplified by a positive feedback of cytosolic Ca2+ on

channel opening, named calcium-induced calcium release

(CICR) (cf. Goldbeter 1996; Kummer et al. 2000). As this

and some other processes involved obey nonlinear kinetics,

Ca2+ oscillations are a nonlinear phenomenon. From the

theory of differential equations, it follows that nonlinear

kinetics is a necessary prerequisite for obtaining stable

limit-cycle oscillations, attracting neighbouring trajectories.

In linear systems, by contrast, oscillations with constant

amplitude are marginally stable rather than representing a

limit cycle. That means that a small deviation in the initial

values leads to a different amplitude. For constant-ampli-

tude oscillations in linear systems, each variable averaged

over one or several oscillation periods equals the value at

the steady state (which is then marginally stable as well)

because the oscillations are simple sinus functions. Non-

linear oscillations can show this property as well, if they

involve special symmetries, like in a pendulum. In non-

linear systems without symmetry, however, this equality

often does not hold (cf. Ritter and Douglas 1970).

Somewhat surprisingly, Lotka–Volterra systems

involving linear and bilinear terms do fulfill this equality

property (cf. Hofbauer and Sigmund 1998; Walter 2000;

Stucki and Urbanczik 2005). The question arises for which

type of biological nonlinear oscillations the equality

between average values and steady-state values is fulfilled.

We have analyzed this and found examples both of models

showing this equality property and of models not showing

it. By discussing with several peers (including Reinhart

Heinrich), we have realized that some had been aware of

this. However, as neither the structural reasons for this

property, nor case studies for calcium and glycolytic

oscillations seem to have been published before we feel

that time is more than ripe to do so. Here, we deal with this

issue in a relatively general way and show interrelations to

approaches such as metabolic control analysis.

For discussing the biological relevance of the equality

property, the following points are of interest: The property

does not hold in a model of oscillatory peroxidase activity,

where the average level of reactive oxygen species (ROS)

is much lower than the steady-state level at the same

parameter values (Hauser et al. 2001; Olsen et al. 2003). In

that case, the steady state is stable because the system

shows hard excitation. ROS are used in some cell types for

signalling and have a harmful effect in oxidizing several

cell compounds. ROS are also used for killing bacteria by

leukocytes, so that a fine-tuned concentration is necessary.

Oscillatory dynamics offers the possibility of employing

harmful substances as second messengers by maintaining

them at very low average concentrations (Hauser et al.

2001). Similarly, Ca2+ is harmful to the cell at higher

concentrations because Ca2+ salts then precipitate. Thus,

signal transmission via the decoding of Ca2+ oscillations is

favourable to occur at a low average concentration of Ca2+.

It is now commonly accepted that the conversion of the

oscillatory signal into a nearly stationary output in non-

excitable cells works by Ca2+-dependent phosphorylation

of proteins. The theoretical prediction of this mechanism

by Goldbeter et al. (1990) and Dupont and Goldbeter

(1992, 1998) was confirmed experimentally by De Koninck

and Schulman (1998). A crucial feature in this process is

how the protein activity depends on calcium. If this

dependence was linear, then the equality between average

and steady-state values would imply that for the decoding,

it would not matter if the signal is transmitted by oscilla-

tions or by an adjustable stationary level of calcium. We

will come back to this point in the ‘‘Discussion’’ section.

In ‘‘Methods’’, the examined mathematical models of

Ca2+ oscillations are presented. In ‘‘The equality property’’,

the equality property is tackled analytically and numeri-

cally. In the respective sub-sections, a comparison is made

with the Higgins–Selkov model of glycolytic oscillations

(Higgins 1964; Selkov 1968) and with Lotka–Volterra

models, and interrelations to metabolic control analysis are

outlined. ‘‘Discussion’’ is devoted to discussing the results

and giving an outlook on further studies.

Methods

Let Z denote the concentration of that substance, Z, for

which we want to examine whether equality between

average and steady-state concentrations holds. In the case

of Ca2+ oscillations, free cytosolic Ca2+ will usually be that

variable. Let us consider the following features:

(a) The system is open in the sense that there is an

exchange of Z across the cell membrane (or, in

general, across the model boundaries).

(b) The net Z flux across the cell membrane is a linear

function of Z with a positive additive constant

(positive with respect to the influx).

(c) The net flux mentioned in condition (b) is indepen-

dent of all other concentration variables in the model

(e.g. Ca2+ in the intracellular stores and Ca2+ bound to

proteins).

Condition (a) implies that there is no linear conservation

relation with non-negative coefficients (e.g. no conserved

sum) for the various Ca2+ species in the model. It is

fulfilled for many models of Ca2+ oscillations in non-

excitable cells presented in the literature, e.g. Somogyi and

Stucki (1991), Goldbeter et al. (1990), Dupont and
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Goldbeter (1993), and Borghans et al. (1997) as well as for

the Higgins–Selkov oscillator (see Sect. 3.2). It is not for

the models proposed by Marhl et al. (1997, 1998a, 1998b,

2000) and Fall and Keizer (2001), which do involve a

conserved sum. The latter models give rise to oscillations

as well. With respect to the flow of energy, they are open

since ATP is consumed.

Condition (c) is fulfilled in most models of Ca2+ oscil-

lations. It appears to be trivial that Ca2+ in intracellular

stores can hardly affect the fluxes in question because the

membrane surrounding the stores separates it from these

processes and Ca2+ bound to proteins cannot normally cross

the cell membrane due to the size of proteins. However, it

has been observed experimentally that depletion of intra-

cellular Ca2+ stores can cause the activation of the so-called

capacitative Ca2+ entry, occurring through store-operated

Ca2+ channels (Berridge 1995; Parekh and Putney 2005). It

has long remained elusive how this activation works.

Recently, Roos et al. (2005) and Liou et al. (2005) (see also

Putney 2005; Draber et al. 2005) have found a protein,

STIM1, present both in the plasma membrane and ER

membrane and possibly transmitting that signal within

homoaggregates. Alternatively, store-operated Ca2+ entry

mediated by a diffusible signal, produced by depleted Ca2+

stores, has been suggested (Randriamampita et al. 1993;

Thomas and Hanley 1995; Bolotina and Csutora 2005).

Store-operated Ca2+ entry has also been analysed by math-

ematical models (Li et al. 1997; Wiesner et al. 1996;

Kowalewski et al. 2006). In the present paper, however, we

focus on models fulfilling the above three conditions and, in

addition, analyse some models including conservation

relations and examine nonlinear efflux functions.

Feature (b) appears to be a critical condition. It needs

not always be fulfilled because also Michaelis–Menten,

Hill or other nonlinear rate laws are possible, and are

indeed used in some models (Höfer 1999; Kummer et al.

2000). A justification of this feature may arise from the low

concentration of cytosolic Ca2+, the peak height of which is

limited for several reasons by about 1 lM (cf. Goldbeter

1996). When the substrate concentration is much lower

than the half-saturation constant, the Michaelis–Menten

kinetics can be simplified to a linear kinetics and so can the

Hill kinetics when the substrate concentration is compa-

rable with the half-saturation constant.

Models that do fulfil all of the three conditions are, for

example, the minimalist model proposed by Somogyi and

Stucki (1991) and the model presented by Borghans et al.

(1997), which was analysed further by Houart et al. (1999)

and Rozi and Jia (2003). While the former model is two-

dimensional and gives rise to regular oscillations, the latter

model is three-dimensional and can give rise to regular as

well as irregular (complex) oscillations depending on

parameter values.

The Somogyi–Stucki model is given by the following

equations (see also Fig. 1):

dZ

dt
¼ Vin � V2 þ V3 þ kfY � kZ ð1Þ

dY

dt
¼ V2 � V3 � kfY ð2Þ

with Vin = const., and counting both concentrations in

terms of the cytosol volume.

Cytosolic Ca2+ changes due to the influx (Vin) from, and

efflux (kZ) to, the extracellular medium. Furthermore, Ca2+

is pumped into (V2) and released from (V3) the intracellular

store (here the ER), besides a passive leak efflux (kfY).

Analogously to that leak and the efflux kZ, also the

pumping rate V2 into the ER is assumed to be linear, k2 Z.

In contrast, the CICR from the ER is described by a non-

linear, Hill-like equation

V3 ¼
k3YZ4

K4 þ Z4
: ð3Þ

The stimulation level of the cell is quantified by the rate

constant k3, which is linked to the level of IP3, influencing

the channel activity. In a certain parameter range, this

model gives rise to spike-like oscillations (Somogyi and

Stucki 1991; for mathematical analyses, see also Heinrich

and Schuster 1996; Schuster and Marhl 2001).

An additional agonist-dependent influx of Ca2+ into the

cell is considered by the ‘‘one-pool model’’ (Dupont and

Goldbeter 1993), given by Eq. (4):

Vin ¼ V0 þ V1b: ð4Þ

The influx Vin consists of V1, denoting the maximum rate of

stimulus-induced Ca2+ influx, and a constant V0. The

parameter b represents the stimulation level of the cell by

Fig. 1 Scheme of the processes described by the class of Ca2+

oscillation models fulfilling conditions (a)–(c). The ellipses indicate

membranes. Abbreviations: Z, cytosolic calcium; Y, calcium in the

ER or other intracellular store, Vin rate of Ca2+ influx into the cell,

Vout rate of Ca2+ efflux out of the cell
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an agonist and varies between 0 and 1. This parameter b
either describes the dependence of the input into the cell

(Dupont and Goldbeter 1993) or of the efflux from a spe-

cial internal store (‘‘two-pool model’’ proposed by

Goldbeter et al. 1990) on the stimulation.

Similar as in the Somogyi–Stucki model, the IP3 con-

centration is considered constant and therefore the agonist

influence is expressed indirectly, in V3 or Vin, by the degree

of saturation of the IP3 receptor, b. The models of

Goldbeter et al. (1990) and Dupont and Goldbeter (1993)

are based on the general governing Eqs. (1) and (2) for the

entire system, with the detailed kinetics for V2 and V3

involving more nonlinear terms (for the equations and a

detailed description, see the cited papers).

Borghans et al. (1997) proposed a more complicated

model, also based on the CICR mechanism. It differs from

the model proposed by Dupont and Goldbeter (1993) in that

the IP3 concentration is considered as a variable, A, and a

third differential equation is included for that variable,

describing the Ca2+-stimulated degradation of IP3 by an IP3-

3-kinase. The stimulation level of the cell is included as a rate

constant in the IP3 dynamics. The release of Ca2+ from the

internal stores into the cytosol (V3) is activated by cytosolic

Ca2+ and IP3 (for the equations and a detailed description, see

Borghans et al. 1997). The dynamic behaviour of the model

of Borghans et al. (1997) has been investigated in more

detail by Houart et al. (1999). They found not only simple

periodic spiking, but also complex Ca2+ oscillation patterns

such as bursting, chaos and quasi-periodicity.

In our analysis, the differential equations were solved by

using the software MADONNA (University of Berkeley,

CA) with the Rosenbrock (stiff) integration method (Figs. 2,

4 and 7). Bifurcation diagrams for chaotic system states

(Figs. 3 and 5) were obtained by integrating the differential

equations via a fourth order Runge–Kutta procedure by a

program written by one of the authors (M.P.).

Results

The equality property

We now analyse the models reviewed in Sect. 2. Summing

up Eqs. (1) and (2) gives:

d Y þ Zð Þ
dt

¼ Vin � kZ: ð5Þ

So, cytosolic Ca2+ and internal store Ca2+ can be regarded

together as virtually one pool, which is replenished by the

influx Vin and depleted by the efflux kZ, as diagrammed in

Fig. 1. Due to Eq. (5), the concentration of cytosolic Ca2+

at the (possibly unstable) steady state, at which dZ=dt ¼
dY=dt ¼ 0; reads:

Zss ¼
Vin

k
: ð6Þ

Now we calculate the average cytosolic Ca2+ concentration

of the oscillating signal. For periodic oscillations,

integration of Eq. (5) over one period T gives:

ZT

0

d Y þ Zð Þ
dt

� �
dt ¼

ZT

0

Vin dt �
ZT

0

kZ dt ¼ 0; ð7Þ

as Z(T) = Z(0) and Y(T) = Y(0). Thus, Eq. (7) simplifies to:

ZT

0

Zdt ¼
ZT

0

Vin

k
dt ¼ Vin

k
T: ð8Þ

Dividing the integral of Z over one period T by that period

gives the average concentration \Z[ of the oscillating

Ca2+. Due to Eq. (6), this is equal to its steady-state

concentration:

Fig. 2 Comparison of steady-state and average levels of cytosolic

Ca2+ for the Somogyi–Stucki model by numerical calculations. a
Original model. b Variant in which the efflux is a Hill function,

Vmax 9 Z3/(Km
3 + Z3), of the cytosolic Ca2+ concentration. Filled

(empty) circles average values in the steady-state (oscillatory) regime;

solid (dashed) horizontal line stable (unstable) steady state; curved
lines envelope of oscillations. Parameter values: Vin = 1, k = 1.2, k2

= 2, K = 1, kf = 0.01, Vmax = 3, Km = 0.8
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Zh i ¼ Zss: ð9Þ

This completes the proof of the equality property under

study. It can be seen that the positive additive constant

mentioned in condition (b) (here denoted Vin) is necessary

because otherwise, both the steady-state and average

concentrations would be zero or even negative so that

limit-cycle oscillations would be impossible. Interestingly,

the average value in the oscillatory regime is not only equal

to the value at the unstable steady state for the same

parameter values, but also equal to the steady-state value for

(other) parameter values that allow the steady state to be

stable. This is because the steady state concentration is

independent of k3 (Fig. 2a). In fact, this is the case for all

parameters except those entering the equation for the steady-

state value (Eq. 6), that is, except Vin and k (see also Fig. 3).

For Ca2+ in the ER, the equality property does not,

however, hold. The above proof of the equality property

does not work for that concentration. Numerical simula-

tions (not shown) indicate that the average Ca2+

concentration in the endoplasmic reticulum is higher than

the steady-state value.

For models having the equality property (9) and in

which the input rate is a linear function of a stimulus

parameter, b (cf. Eq. (4)), as in the models of Goldbeter

et al. (1990), Dupont and Goldbeter (1993), and Borghans

et al. (1997), a linear relation between b and \Z[ follows

directly from Eqs. (6) and (9):

Zh i ¼ 1

k
V1bþ V0ð Þ: ð10Þ

This linear relationship can be seen by comparing Fig. 5a,

b in Rozi and Jia (2003).

To illustrate the equality property (Eq. 9) numerically,

the average level, hZi was calculated for the Somogyi–

Stucki model (by integrating Eqs. 1–3) and the Borghans

model with parameter values from Houart et al. (1999)

(Figs. 2a and 3, respectively). To investigate whether the

equality property is dependent on the linearity of the net

flux, we now analyse two variants of the Somogyi–Stucki

model in which a nonlinear term instead of the linear Ca2+

efflux out of the cell (kZ in Eq. 1) is taken. When a quadratic

efflux term of the form kZ2 is assumed, an equation analo-

gous to Eq. (5) results in a steady state concentration of

Zss ¼
ffiffiffiffiffiffi
Vin

k

r
; ð11Þ

while averaging leads to

Z2
� �

¼ Vin

k
: ð12Þ

This means that the average of the squared concentration,

hZ2i is equal to the square of the steady-state concentration

in the modified model. For oscillatory regimes, this

equality does not entail the equality property (9). This is

supported by numerical results (not shown), indicating that

the average value is lower than the steady-state value.

As experimental data indicate a Hill kinetics for the

Ca2+ extrusion (Camello et al. 1996; Carafoli 1991), we

now choose a Hill kinetics term:

Vout ¼
VmaxZ3

K3
M þ Z3

ð13Þ

A Hill coefficient of 3 was assumed referring to the results

of Camello et al. (1996). The steady state value of

cytosolic Ca2+ is then obtained as

Zss ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vin

Vmax � Vin

KM
3

r
ð14Þ

while calculating the average results in

Vin

Vmax

¼ Z3

K3
M þ Z3

� �
ð15Þ

As the term in brackets is a nonlinear function of Z and the

average of a nonlinear function is not generally equal to the

function of the average, the equality property does not

generally hold. Numerical calculations indicate that the

average Ca2+ concentration depends on the position of the

Km value between base-line and maximal peak height of

the oscillation and the shape of the peaks (sharp or sinu-

soidal). Therefore, in the case of Hill kinetics, the average

Ca2+ concentration can be higher or lower than the steady-

state value. These qualitative differences are due to the

Fig. 3 Illustration of the equality property for the Borghans et al.

(1997) model with parameter values from Houart et al. (1999) by

numerical calculations. Filled (empty) circles average values in the

steady-state (oscillatory) regime; solid (dashed) straight line stable

(unstable) steady state; curved lines local maxima and minima of

oscillations. Parameter values are the same as in Houart et al. (1999),

Table 1, set ‘‘Chaos’’. The averages were computed over t = 105 min.

Convergence was observed from 104 min on
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effect of the convex and concave part of the Hill function.

The parameter values in Fig. 2b were chosen such that the

experimentally observations were qualitatively mimicked.

The oscillation shows a spike-like pattern in the predomi-

nant part of the parameter range, which resembles

experimentally obtained peak shapes (e.g. Somogyi and

Stucki 1991). For most k3 values in Fig. 2b, the base-line of

the oscillations is closer to the Km value than the maximal

peak height. With the diagrammed parameter values, the

average cytosolic Ca2+ concentration is slightly higher than

the steady state value in some parameter range and nearly

equal to it in another.

In Fig. 3, the linear dependency between Zss and hZi
on the agonist concentration b can be clearly seen (see Eqs.

4, 6 and 10). In the above mentioned models, Zss and hZi
are linearly dependent on Vin and its components, that is,

the ‘‘leak influx’’ V0 and agonist concentration b. An

increase of the average value with increasing agonist

concentration (Woods 1986) or external Ca2+ concentration

(Somogyi and Stucki 1991) has indeed been found in

experiments.

Our above proof of Eq. (9) applies to every type of

regular oscillation in the considered class of models,

including folded limit cycles and periodic bursting. Care

has to be taken when the oscillations are irregular (quasi-

periodic or chaotic) because a period, T, cannot then be

defined. Nevertheless, numerical calculations over a large

time span show that the equality property also holds in that

case (Fig. 3). Based on the ergodicity (recurrent behaviour)

of the trajectory in chaotic attractors and the boundedness

of the attractors (cf. Thompson and Stewart 2002), a the-

oretical explanation of that observation can be given. If we

consider initial values within the attractor, the Y, Z and A

values return to an arbitrarily close proximity of these

values: Y T̂
� 	
� Y 0ð Þ



 

\e and analogously for Z and A

(Fig. 4). Importantly, the (approximate) recurrence time, T̂;

is not generally the same for repeated returns to a close

proximity of the initial values. Now, one can choose a very

large time span, T, that is the sum of sufficiently many

‘‘recurrence times’’. In Fig. 4, the trajectory during two of

such consecutive ‘‘recurrence times’’ is shown for illus-

tration. In the numerical computation of the average, we

used a time span sufficiently long that convergence could

be observed. Thus, Eqs. (7, 8) can be applied with an

arbitrarily small error and the equality property practically

holds also in the case of irregular oscillations. Clearly, this

is not a strict mathematical proof, which we leave for

future work.

We now examine the model proposed by Marhl et al.

(2000). We mentioned above that it does not satisfy

condition (a) because it involves a conservation relation

for Ca2+. We here analyse both the original model and a

slightly modified variant that does satisfy condition (a).

We open the model in the sense that we additionally

introduce a Ca2+ exchange between the cytosol and the

extracellular space in a way that the net transmembrane

flux is linearly dependent on the Ca2+ concentration in

the cytosol. The modified equation for cytosolic Ca2+

reads:

dZ

dt
¼ Vch þ Vleak � Vpump þ Vm out � Vm in � Vpr on

þ Vpr off þ Vin � kZ

ð16Þ

where the fluxes Vi are in part highly non-linear functions

(for their expressions and the remaining system equations,

see the original paper by Marhl et al. (2000), where the

symbol J was used instead of V). The only difference to

the original model (Marhl et al. 2000) is that additional

terms Vin and kZ denoting a constant Ca2+ influx into the

cell and an efflux out of the cell, respectively, are

included in Eq. (16). Consequently, if Vin and k are

unequal to zero, the total concentration of Ca2+ in the cell

is no longer constant. Thus, instead of calculating the

concentration of the Ca2+ bound to the cytosolic proteins,

Y3, by the use of the conservation relation for the total

concentration of Ca2+ in the cell (see Marhl et al. 2000),

we need to take into account a differential equation for

Y3:

Fig. 4 Three-dimensional plot of two successive parts of the

trajectory, which come very near to the initial point. The trajectory

shows the numerical solution of the Houart et al. (1999) model in the

chaotic regime. Parameter values: b = 0.675; all other parameter

values are the same as in Houart et al. (1999). Filled circle initial

point; empty circle, point on the trajectory that is located very close to

the initial point at the end of the first ‘‘orbit’’ (black curve). The end

point of the second ‘‘orbit’’ (grey curve) is so close to the initial point

that it cannot be distinguished in the diagram. The two ‘‘orbits’’ are

passed within about 5 min (black curve) and about 7 min (grey
curve), respectively
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dY3

dt
¼ kþZ � Pr � k�Y3 ð17Þ

Y1, Y2 and Y3 stand for the Ca2+ levels in the ER, mito-

chondria and Ca2+-protein complexes, respectively. Pr

denotes the free protein concentration.

The system structure is analogous to that presented in

Fig. 1. However, this system is somewhat more complex

since the cytosolic Ca2+ is linked to three different com-

partments: the ER, mitochondria and proteins. So, Ca2+ in

all the compartments can be regarded together as virtually

one pool, which is replenished by the influx Vin and

depleted by the efflux kZ of Ca2+ out of the cell. Mathe-

matically, instead of the sum of two variables taken in Eq.

(5), we need to take into account an appropriate linear

combination of all four variables Z, Y1, Y2 and Y3 to show

that the average level of cytosolic Ca2+ indeed equals the

level at the steady state. We take the following expression,

which is analogous to Eq. (5):

d
qER

bER
Y1 þ qm

bm
Y2 þ Y3 þ Z

� �

dt
¼ Vin � kZ ð18Þ

qER and qm denote the ER/cytosol and mitochondria/

cytosol volume ratios, respectively. bER and bm are the

corresponding buffer capacities. By analogous consider-

ations as above, calculating the steady-state concentration

of cytosolic Ca2+ (see Eq. 6) and the average cytosolic Ca2+

concentration of the oscillating signals (see Eqs. 7–8),

we obtain Eq. (9).

In Fig. 5, we compare the original model (Marhl et al.

2000) with the modified model including influx and efflux.

Note that in the oscillatory region of the original model,

average and steady-state cytosolic Ca2+ concentrations are

unequal to each other, notably hZi\ Zss, while in the

modified model, the equality property holds.

Comparison with the Higgins–Selkov oscillator

The Higgins–Selkov model of glycolytic oscillations

(Higgins 1964; Selkov 1968) is characterized by a constant

influx leading to Y, a positive feedback of the product Z on

its own production (autocatalysis) and a linear efflux of Z

(Fig. 6). Y and Z denote fructose-6-phosphate and fructose-

1,6-bisphosphate, respectively. In comparison to sub-

sequent models of glycolytic oscillations (e.g. Wolf and

Heinrich 2000; Madsen et al. 2005), the Higgins–Selkov

model is a minimalist model showing the essential features.

It is worth noting that the exact mechanism of the positive

feedback in glycolytic oscillations is still under investiga-

tion (Madsen et al. 2005).

The system equations read

dY

dt
¼ Vin � V1 ð19Þ

dZ

dt
¼ V1 � kZ ð20Þ

The rate laws for influx and efflux are the same as in the

Fig. 5 Comparison of steady-state and average levels of cytosolic

Ca2+ for (a) the model proposed by Marhl et al. (2000) and (b) the

modified model including a Ca2+ exchange across the cell membrane

(cf. Eqs. 16 and 17) by numerical calculations. Filled (empty) circles
average values in the steady-state (oscillatory) regime; dashed line
unstable steady state; solid lines local maxima and minima of

oscillations or stable steady state; kch rate constant of calcium channel.

Parameter values: Vin = 1.0 lMs-1, k = 10 s-1 (all other parameter

values are the same as in Marhl et al. (2000)). The averages were

computed over t = 105 s. Convergence was observed from 104 s on

Fig. 6 Reaction scheme of the Higgins–Selkov oscillator. In the case

of glycolytic oscillations, Y and Z denote fructose-6-phosphate and

fructose-1,6-bisphosphate, respectively
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Somogyi-Stucki model. For the interconversion step, the

following nonlinear rate law is used in the Higgins–Selkov

model

V1 ¼ k1YZ2 ð21Þ

In a suitable parameter range, this model gives rise to limit-

cycle oscillations (Higgins 1964; Selkov 1968; see also

Heinrich and Schuster 1996). The model fulfils all the three

conditions (a)–(c) stated in Sect. 2. There is an important

difference to the Ca2+ models, though. While, in the latter,

the reactions forming and consuming Y represent a sort of

dead-end, the interconversion step in the Higgins–Selkov

model belongs to a straight pathway involving also the

influx and efflux. Thus, the throughput flux brings about the

turnover of both substances. Nevertheless, the net flux

(influx minus efflux) is a linear function of Z also here

because the input flux is constant (note that the first reac-

tion is irreversible) and the output reaction obeys a linear

rate law. Moreover, Y and Z can again be regarded virtually

as one pool with respect to influx and efflux.

Summing up Eqs. (19) and (20) leads to the same

steady-state concentration as in the Ca2+ models fulfilling

the three conditions, Eq. (6). Thus, Zss is again dependent

on influx and efflux rates only. Integration over one period

leads to Eq. (7) and finally to the equality property, Eq. (9),

for periodic oscillations.

Numerical calculations illustrate this equality, as shown

in Fig. 7. It can be seen that, in total, three types of

dynamic behaviour can be observed: a stable steady state

with positive concentrations in some parameter range,

stable limit-cycle oscillations in another parameter range,

and a case where the trajectory runs to Z ? 0 and Y ?
infinity. The latter behaviour can occur for all parameter

values but its basin of attraction gets smaller and smaller as

k1 increases (proof not given here). In the parameter region

where neither the steady state nor the limit cycle is stable,

the latter type of asymptotic behaviour is the only one.

Then, the equality property does not hold because one

variable tends to infinity.

Interrelations with metabolic control analysis

A necessary prerequisite for the equality property (9) to

hold is that the steady-state value of the variable under

consideration is determined uniquely by the influx and

efflux reactions. That is, the transport reactions across the

membrane of the intracellular stores in the Ca2+ models

and the reaction between Y and Z in the Higgins–Selkov

oscillator must not have any influence on this value and,

hence, on the steady-state efflux, kZ. Otherwise, the non-

linear kinetics of these processes would affect the average

value. In metabolic control analysis (cf. Heinrich and

Schuster 1996; Fell 1997), a situation where some pro-

cesses do not have any influence (control) on the fluxes of

some other processes or on some steady-state concentra-

tions is called ‘‘control insusceptibility’’ (Schuster and

Schuster 1992; Heinrich and Schuster 1996; for a related

study, see Teusink and Westerhoff 2000). This situation

can occur for several reasons, such as (1) irreversibility of

some reaction, (2) complete saturation of some enzyme, (3)

a special stoichiometric structure, or (4) quasi-equilibrium

enzymes (for case (4), see Kholodenko et al. 1998). That

the steady state is unstable in the case of oscillations does

not imply any problems since the control coefficients are

formally defined also for unstable states as long as the

Jacobian matrix has full rank (Reder 1988).

In the Higgins–Selkov oscillator, the first reaction is

assumed to be irreversible. In any unbranched reaction

chain with the first reaction being irreversible and without

feedback on that reaction, the reactions downstream of the

first one do not exert any flux control (Heinrich and

Rapoport 1974). Accordingly, in the Higgins–Selkov

oscillator, the second reaction is not able to exert any

control on the steady-state flux. Moreover, it cannot control

the concentration Z either due to Eq. (6), while it can

control Y. If the first reaction were reversible, Y would

affect the input rate, so that the second reaction would gain

control over Z, and the equality property would no longer

hold.

In the case of Ca2+ oscillation models, the special net-

work structure rather than the irreversibility of the input

Fig. 7 Illustration of the equality property for the Higgins–Selkov

model by numerical calculations. Empty triangles stable asymptotic

solution where Z ? 0 and Y ? infinity; empty circles average values

in the case of limit cycles; filled circles average values in the case of

stable steady state. Solid (dashed) horizontal line stable (unstable)

steady state; curved lines envelope of oscillations. In the region where

two different asymptotic behaviours are possible, the outcome

depends on the initial values. Parameter values: Vin = 1, k = 1, initial

values of Z were below or equal Zss = 1 (smallest: Z0 = 0.5), Y0 = 1
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reaction is of importance. The equality property would not

be violated if the input reaction were reversible as long as

the rate of the backward reaction is linearly dependent on

Z. This is because both the influx and efflux reactions in the

Ca2+ oscillation models connect to Z, in contrast to the

Higgins–Selkov oscillator.

To analyse the network properties, it is convenient to

consider the stoichiometry matrix, N (cf. Reder 1988;

Heinrich and Schuster 1996). In this matrix, the stoichi-

ometric coefficients are gathered such that the rows and

columns of the matrix correspond to substances and reac-

tions, respectively. The scheme of Ca2+ fluxes shown in

Fig. 1 has the following matrix N (with the first row cor-

responding to Z),

N ¼ 1 �1 �1 1 1

0 0 1 �1 �1

� �
: ð22Þ

For analysing the properties of a network at steady state,

it is useful to consider the nullspace matrix, K, to the

stoichiometry matrix, defined by

NK ¼ 0 ð23Þ

(cf. Reder 1988). For the matrix given in Eq. (22), a

possible choice of the nullspace matrix is

K ¼

1 0 0

1 0 0

0 1 1

0 1 0

0 0 1

0
BBBB@

1
CCCCA ð24Þ

Control insusceptibility can occur if the nullspace matrix

can be block-diagonalized (Schuster and Schuster 1992):

K ¼
K1 0 � � �
0 K2 � � �
..
. ..

. . .
.

0
B@

1
CA ð25Þ

The matrix given in Eq. (24) has such a structure, with

the influx and efflux corresponding to one block and

the fluxes across the ER membrane corresponding to

another one. Therefore, the fluxes through the subsystems

corresponding to the blocks can be changed independently

of each other. For example, the cyclic flux through the

Ca2+ pump and the Ca2+ channel in the ER membrane (and

possibly through the leak) in a steady state can be changed

without affecting the efflux kZ. Thus, the concentration Zss

is independent of the properties of the nonlinear processes

within the cell. However, this is not a sufficient condition.

A second necessary condition concerns the so-called link

matrix, L. This matrix, which expresses the conservation

relations (if any), is defined in the following way (Reder

1988). The rows of N are rearranged such that a maximum

number of linearly independent rows are situated at the

top:

N ¼ N0

N0

� �
; ð26Þ

where N0 has the same rank as N. Then,

N ¼ L N0: ð27Þ

When the system does not involve any conservation

relations (like the Somogyi–Stucki model), L is simply the

n 9 n identity matrix, with n denoting the number of

substances. In order for control insusceptibility to occur,

also the link matrix must be block-diagonalizable,

L ¼
L1 0 � � �
0 L2 � � �
..
. ..

. . .
.

0
B@

1
CA ð28Þ

which is trivially fulfilled if it is the identity matrix.

Condition (28) is not fulfilled for the model by Marhl et al.

(2000), which is a closed system involving binding of Ca2+

to proteins (for a related model, see Fall and Keizer 2001).

That system (in the unmodified form without influx and

efflux) has the stoichiometry matrix

N ¼

�1 1 1 �1 1 �1 1

1 �1 �1 0 0 0 0

0 0 0 1 �1 0 0

0 0 0 0 0 1 �1

0 0 0 0 0 �1 1

0
BBBB@

1
CCCCA; ð29Þ

where the rows have been arranged such that the first three

rows are linearly independent. The five rows then

correspond, in that order, to the substances Z, Y1, Y2, Y3

and Pr. The link matrix reads

L ¼

1 0 0

0 1 0

0 0 1

�1 �1 �1

1 1 1

0
BBBB@

1
CCCCA ð30Þ

This matrix implies the conservation relations

Z þ Y1 þ Y2 þ Y3 ¼ const.; ð31aÞ
�Z � Y1 � Y2 þ Pr ¼ const.; ð31bÞ

Relation (31b) can be replaced by the simpler relation

Y3 + Pr = const., which is the sum of Eqs. (31a) and (b).

The link matrix given in Eq. (30) cannot be block-diago-

nalized. Thus, the kinetic parameters of the processes

within the cell do control the concentration Z. This can be

understood by considering the conservation relation. If, for

example, the binding of Ca2+ to proteins is accelerated, the

steady state value of Y3 increases, which withdraws part of

Z. In contrast, in the open model (including Vin and the

efflux kZ), Z can be replenished from the outside.

Control insusceptibility of a subsystem A by a subsys-

tem B due to network structure requires a third condition,
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which is related to condition (c): The metabolites partici-

pating only in the reactions belonging to the subsystem B

(like Y in the example systems) should not affect the

reaction rates in subsystem A (see Schuster and Schuster

1992, or Heinrich and Schuster 1996, for a mathematical

formulation). This condition is fulfilled for most models of

Ca2+ oscillations. However, as mentioned in Sect. 2, store-

operated calcium entry (Berridge 1995; Parekh and Putney

2005) would violate that condition.

The analysis in this section allows one to devise more

complicated models for which the equality property (9)

holds. For example, there can be intracellular stores in

addition to the ER and mitochondria. The exchange fluxes

across the membranes of these stores would imply addi-

tional diagonal blocks in the nullspace matrix.

Comparison with Lotka–Volterra models

A very famous model giving rise to oscillations is the two-

dimensional Lotka–Volterra system describing predator-

prey dynamics (cf. Hofbauer and Sigmund 1998; Murray

2002):

_x ¼ x a� byð Þ ð32aÞ
_y ¼ y �cþ exð Þ ð32bÞ

where x and y denote the population numbers of prey and

predator, respectively. The nontrivial steady state given by

xss ¼ c=e; ð33aÞ
yss ¼ a=b ð33bÞ

is a centre surrounded by marginally stable oscillations.

That is, these are no limit cycles because they do not attract

neighbouring trajectories.

For system (32a, b), conditions (b) and (c) are not ful-

filled. Although one could form a linear combination of

these two equations such that the bilinear terms cancel each

other, the resulting equation would still depend on both x

and y. Nevertheless, system (32a,b) has the remarkable

property that the average values equal the steady-state

values. This can be proved as follows (cf. Hofbauer and

Sigmund 1998; Walter 2000; Stucki and Urbanczik 2005).

The proof is based on a transformation of the variables by

dividing Eqs. (32a) and (b) by x and y, respectively

_x

x
¼ d

dt
log x ¼ a� by ð34aÞ

_y

y
¼ d

dt
log y ¼ �cþ ex ð34bÞ

Multiplication of Eq. (34a) by dt and integration over one

period T gives

Zx Tð Þ

x 0ð Þ

d log x tð Þ¼
ZT

0

a� byð Þdt ð35Þ

log x Tð Þ � log x 0ð Þ ¼ aT � b

ZT

0

y tð Þdt: ð36Þ

Since x(T) = x(0), this results in

1

T

ZT

0

y tð Þdt ¼ a

b
; ð37Þ

which implies, due to Eq. (33b),

yh i ¼ yss: ð38Þ

An analogous proof can be given for the average of x,

resulting in hxi = xss.

Provided that the steady state is unique and no variable

tends to zero or infinity, this proof can be generalized to

Lotka–Volterra equations for more than two populations

(Theorem 5.2.3 in Hofbauer and Sigmund 1998) and the

related replicator equations, which involve bilinear and

trilinear terms (Schuster et al. 1981; Theorem 7.6.4 in

Hofbauer and Sigmund 1998). Stucki and Urbanczik

(2005) have shown that the equality also holds for a min-

imal model of the oscillator proposed by Willamowski and

Rössler (1980), which is a special three-dimensional Lot-

ka–Volterra model.

Here, we generalize the proof, in the two-dimensional

case, to the following equations:

_x ¼ f xð Þ a� byð Þ ð39aÞ
_y ¼ g yð Þ �cþ exð Þ ð39bÞ

where f(x) and g(y) are arbitrary (possibly nonlinear)

functions of x respectively y. They only have to fulfil the

very weak condition that they should not have any zero in

the interval of x and y given by the minimum and

maximum values of the oscillation. Under this condition,

we can divide the equations by these functions:

_x

f xð Þ ¼ a� by ð40aÞ

_y

g yð Þ ¼ �cþ ex ð40bÞ

Now, the proof runs as above, with logx replaced byR
f ðxÞ½ ��1

dx: By contrast, replacing the terms a - by or -

c + ex on the right-hand sides of Eq. (39a, b), respectively,

by nonlinear functions entails that the equality property is

no longer fulfilled (cf. Walter 2000).

It is worth mentioning the correspondence between the

terms a – by and -c + ex in the Lotka–Volterra equations
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and the term Vin – kZ in the Ca2+ models. Both are linear

functions, which is a prerequisite for the proof of the

property in question.

Although Lotka–Volterra models obey a nonlinear

conservation relation (Hofbauer and Sigmund 1998), con-

dition (a) is satisfied because these models describe open

systems. For the original equations, conditions (b) and (c)

seem not to be fulfilled; however, by the variable trans-

formation shown above, leading to logx and logy, the latter

two conditions can, in a sense, be considered fulfilled

because the right-hand sides of Eq. (34a, b) are linear

functions. However, the term involving x occurs on the

right-hand side of the equation for y and vice versa, while

the term Vin – kZ occurs on the right-hand side of the

equation for Y + Z in the Ca2+ and glycolysis models.

Discussion

Nonlinear oscillatory systems do not exhibit harmonic

oscillations. Therefore, unless special symmetries are

present, one might assume that the average value of any

oscillating variable is unequal to the value of that variable

at the corresponding unstable steady state at the same

parameter values, where ‘‘corresponding’’ means that the

steady state is a continuation of that state from which the

oscillation emerged in a bifurcation. Here, we have shown

that, for several models of intracellular Ca2+ oscillations in

non-excitable cells such as the Somogyi–Stucki and

Dupont-Goldbeter ‘‘one-pool model’’, these two values do

equal each other for cytosolic calcium (Eq. 9). They do not,

however, equal each other for the Ca2+ concentration in the

intracellular store. The equality property is due to the

existence of a Ca2+ net flux across the cell membrane,

which is linearly dependent on the cytosolic Ca2+ con-

centration and independent on the other concentrations, as

phrased above in conditions (a)–(c). The equality property

even holds for some models giving rise to chaotic

oscillations.

We have shown that the equality property holds for one

variable (corresponding to fructose-1,6-bisphosphate) in

the Higgins–Selkov model of glycolytic oscillations. Also

for an extended model of glycolytic oscillations (Wolf and

Heinrich 2000), numerical simulations show that the

property holds for some of the variables (J. Wolf personal

communication). We have also shown that this property is

linked to the phenomonon of control insusceptibility (Sect.

3.3). A potential application is that, whenever the equality

property is observed for a real system with unknown net-

work structure, conclusions about that structure can be

drawn. About concentration control insusceptibility, less is

known (see Teusink and Westerhoff 2000, for some

results) than about about zero flux control. It will be

interesting to extend metabolic control analysis in that

direction in the future.

Under conditions (a)–(c), the average level in the

oscillatory situation is not only equal to the level at the (in

reality non-observable) unstable steady state with the same

parameter values, but also equal to the steady-state level

for (other) parameter values that allow the steady state to

be stable. This holds for all parameters except those

involved in the net flux across the cell membrane because

the steady-state concentration only depends on these

parameters. This reasoning is important because, in evo-

lution, the organisms must change parameter values to

switch from a stationary regime to an oscillatory regime.

Since the average Ca2+ or metabolite concentration in the

oscillatory regime—compared to its steady state value—

depends on the type of the influx and efflux kinetics, our

results may lead to hypotheses why special kinetics of the

processes involved may have evolved.

In particular, for the models by Goldbeter et al. (1990),

Dupont and Goldbeter (1993), and Borghans et al. (1997),

we have derived that the equality property implies a linear

dependency between the level of stimulation b and the

average concentration of the oscillating calcium \Z[.

Our results are interesting in view of the frequently

posed question which advantages oscillations may have in

biology (Heinrich and Schuster 1996; Dupont and Goldb-

eter 1998; Gall et al. 2000). It has been suggested that

lowering some concentrations could be an advantage of

oscillations. For example, lowering the average ROS con-

centration by oscillations has indeed a beneficial effect by

protecting the peroxidase from inactivation (cf. Hauser

et al. 2001; Olsen et al. 2003). Also in some oscillatory

Ca2+ systems, a concentration lowering is observed, for

example, in the model of Marhl et al. (2000) (see Fig. 5a).

However, in systems in which the three above-mentioned

conditions are (approximately) fulfilled, changing the

average concentration is not an effect of oscillations.

Nevertheless, systems showing the equality property can

lower the average (and steady-state) concentration by

reducing the influx or activating the efflux.

As alluded to in the Introduction, the equality property

has implications for the decoding of calcium oscillations

(for modelling the decoding, see Gall et al. 2000; Dupont

et al. 2003; Schuster et al. 2005; Marhl et al. 2006; Marhl

and Grubelnik 2007). As outlined above, there is a ten-

dency to keep the Ca2+ concentration low. In order that

Ca2+ binding proteins can be activated without increasing

the average Ca2+ level, it is favourable that Ca2+ oscillates

and the activity of the decoding protein depends nonlin-

early on Ca2+ in such a way that short spikes contribute

much to protein activation (Dolmetsch et al. 1998, Gall

et al. 2000). Thus, spike-like oscillations can activate these

proteins in a frequency-dependent manner with an average
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Ca2+ level equal, or even lower, than the steady-state level.

It has been argued that this is a reason why Ca2+ oscillates

rather than that its steady-state concentration is varied for

signal transduction (Gall et al. 2000; Dupont et al. 2003).

Experiments show that Ca2+ oscillations enhance the

NFAT-dependent transcription compared to a constant

Ca2+ signal with the same average at low Ca2+ stimulation

levels (Dolmetsch et al. 1998). This was ascribed to the

highly nonlinear dependence of the activity of the tran-

scription factor NFAT on the Ca2+ concentration. In this

study we conclude that, in model systems where the

equality property is valid, the effect of oscillations is not a

change in the average Ca2+ concentration, but may rather

be that a more efficient protein activation can be achieved.

It is of course interesting to derive conditions under

which the average concentration is lower than the steady-

state value and conditions under which it is higher. Our

numerical results (shown only partly here) indicate that the

average concentration is lower (higher) than the steady-

state value whenever the kinetics of the efflux is a convex

(concave) function. It will be the subject of a sequel paper

to prove this analytically, for example, by Jensen’s

inequality (cf. Rudin 1987).

One might argue that a linear rate law for the efflux in

systems showing Ca2+ oscillations is not very realistic,

because experimental data are indicative of a Hill kinetics

for the export out of the cell in non-excitable cells (Cam-

ello et al. 1996; Carafoli 1991). However, since a Hill

kinetics has both a convex and concave part, the two

effects may approximately cancel each other in a case

where the Km value has an appropriate intermediate value

between base-line and maximal peak height of the oscil-

lation. This was indicated by numerical simulations, shown

in Fig. 2b. Condition (b) is then approximately fulfilled, so

that equality is likely to be approximately valid.

It has been known earlier that a similar equality property

holds for the variables in Lotka–Volterra models (cf.

Hofbauer and Sigmund, 1998) although conditions (b) and

(c) are not fulfilled. Here, we have generalized this result,

in the two-dimensional case, to equations in which the

variables x and y on the right-hand sides of Eqs. (32a) and

(b), respectively, are replaced by any (possibly nonlinear)

functions of x respectively y not having any zero in the

interval of x and y given by the minimum and maximum

values of the oscillation.

The oscillations in two-dimensional Lotka–Volterra

systems are marginally stable, that is, they do not represent

limit cycles. In that sense and also in view of the equality

property, these systems behave like linear systems. By

contrast, Ca2+ oscillations represent limit cycles. There is

some mathematical interrelation between Lotka–Volterra

models and the models of Ca2+ oscillations fulfilling the

condition (b) given in Sect. 2 because both involve linear

terms, a - by and -c + ex respectively Vin - kZ. The

proof for the classical Lotka–Volterra equations as well as

for the modified equations given above runs via a trans-

formation to linear equations. Thus, some intrinsic linearity

is used.

It cannot, however, be concluded that the equality

property holds for all nonlinear oscillations (Ritter and

Douglas 1970). Here, we have examined two example

models for which it does not hold: the Somogyi–Stucki

model with quadratic kinetics or Hill kinetics for the efflux

reaction and the model of Marhl et al. (2000), for which

condition (b) and (a), respectively, are not fulfilled. Also in

systems in which condition (c) is not satisfied, such as in

the presence of store-operated Ca2+ entry, the equality

property is not likely to hold. Several mathematical models

examined store-operated Ca2+ entry in Ca2+ transients

(Wiesner et al. 1996) and Ca2+ oscillations, in particular

considering voltage-gated fluxes (Li et al. 1997) and a

diffusible messenger (Kowalewski et al. 2006). It is

worthwile analysing the relation between average and

steady-state Ca2+ levels in the case of store-operated Ca2+

in future studies.

It is an interesting question why, at least in some cells,

an interaction between Ca2+ in the stores and Ca2+ flux

across the cell membrane appears to have emerged during

evolution. It might be possible that control insusceptibility

is avoided by evolution. A similar observation concerns

sugar metabolism. Flux control insusceptibility would

occur if fructose-2,6-bisphosphate did not directly affect

any enzyme in the glycolytic pathway. However, it is an

effector of phosphofructokinase-1 (cf. Schuster and

Schuster 1992).

The equality property is also interesting for the fol-

lowing reason. Several approaches in theoretical biology

start from the assumption of steady state, e.g. metabolic

control analysis (cf. Heinrich and Schuster 1996; Fell

1997), metabolic pathway analysis (cf. Papin et al. 2004)

and flux balance analysis (cf. Palsson 2006). As far as

fluxes are concerned, it is known that many results of these

analyses can be generalized to oscillations because, in this

case, the steady-state equation NV = 0 holds for the

average fluxes (for some extensions of metabolic control

analysis to oscillations see, e.g. Heinrich and Schuster

1996, and Reijenga et al. 2002). In view of the above

results, we can conclude that also for concentration vari-

ables, many results of these analyses can be generalized to

oscillation models if the equality property is fulfilled.
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