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SLOVENIA

Abstract: - In biological signal transduction systems robustness is one of the key system properties that assure
reliable and immutable signal processing within and among cells in the tissue. Since signal transduction systems
have to respond also very sensitively and flexibly to weak external stimuli, they posses several states, which differ
in their robustness. The question arises, how to mathematically quantify and measure the robustness of a particular
state. We analyse the robustness of oscillatory states in a mathematical model of an excitable neuron. In accordance
with our previous studies for calcium dynamics, we show that the robustness of a particular oscillatory state can be
determined by the divergence calculated along the trajectory of the corresponding attractor.
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1  Introduction
Sensitivity, flexibility and robustness are important
properties of biological systems. Through the
evolution biological systems were compelled to find a
compromise between all these properties. This is of
special importance for signal transduction systems,
which have to be able to detect and respond very
flexibly to weak external stimuli. On the other hand,
however, they have to be robust against undesirable
external influences like noise and other surrounding
signals.

At first glance, it appears contradictory that a
biological system could be flexible and robust at the
same time. Signal transduction systems, for example,
possess different dynamical states, which are not only
single stationary states but also multistable, periodic,
multirhythmic, and non-periodic oscillatory states [1].
In such cases some dynamical states facilitate flexible
responses, whereas others guarantee robust
functioning of the system. The question arises,
however, how to recognise and be able to predict in
advance if a given system possesses flexible or/and
robust states. Furthermore, it is of interest to quantify
the flexibility and robustness of particular states
mathematically.

In our previous studies, we have developed
mathematical tools for measuring the flexibility and

robustness of calcium signalling pathways.
Oscillatory changes in cytosolic calcium, the so-
called calcium oscillations, play an important role in
cellular signalling since they regulate several
processes from egg fertilisation to cell death [2]. In
order to understand the cellular mechanism of
calcium oscillations many mathematical models have
been developed, which were recently reviewed in [3].
We studied the flexibility and robustness of several
mathematical models for simple and complex calcium
oscillations and found that both flexibility and
robustness depend on attractive properties of the
phase space, which can be mathematically quantified
by measuring the divergence along the attractor in the
phase space [4-9].

Here we show that the mathematical formalism for
determining the flexibility and robustness of
oscillatory regimes in the models for calcium
dynamics can be applied to other oscillatory systems
as well. We demonstrate this on one of the most
prominent examples of signal transduction pathways
in biological systems, i.e. the neuronal system. We
analyse the robustness of oscillatory states in a
mathematical model of an excitable neuron and show
that in this case the local divergence can also be taken
as an appropriate measure for determining the
robustness of oscillatory states.
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2  Mathematical Model
We use a mathematical model of an idealized nerve
membrane model, which was first formulated by
FitzHugh and Rinzel in 1976 (unpublished) and latter
extensively studied numerically in [10]. The evolution
of the model is governed by the following differential
equations:

Izyxx
t
x

 3/
d
d 3 , (1)

 byax
t
y

 
d
d

, (2)

 dzcx
t
z

 
d
d

, (3)

where 3.0I , 7.0a , 8.0b , 9.0c , 1d ,
08.0 , and 0001.0 . All results presented here

were calculated for these values if not otherwise
stated in the text or in figure captions. For the chosen
parameter values, the model system exhibits elliptic
or the so-called “subHopf – fold cycle” bursting
oscillations (see [11,12]).

The robustness of the system is examined by
studying responses of the model to a well-defined
pulsatile external forcing, which has the form
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where 025.0w is the amplitude of the forcing
signal, tf is the time of the pulse application, and

20u  is the pulse duration. The pulsatile forcing is
taken into account by adding  tf  to the terms in Eq.
(1).

3  Results
We study the robustness of the model system by
applying the external forcing  tf  at different times
tf. The external forcing is systematically applied
during the course of one oscillation period. Figure 1
shows that the response of the system depends
significantly on tf. More precisely, for a given w, there
exists a sharp boundary between the “flexible part”
(right from the dashed line in Fig. 1) in which the
external pulse evokes a new bursting phase, and the
“robust part” (left from the dashed line in Fig. 1) in
which the external pulse does not evoke a new
bursting phase. The robust part corresponds to the
well-known refractory period in which the nerve is

unresponsive to external signals (see e.g. [13]). By
applying the external forcing, the oscillation period
can be reduced down to the extend of the robust part,
which characterises the robustness of the oscillatory
state. We define the robustness (R) of the signal as a
quotient between the time in which the system
remains practically unaffected by the external forcing

)( Rt , and the whole basic oscillation period )( 0t  [6]:

0t
tR R .      (5)

Fig. 1 Responses of the model system in the
reference state ( 3.0I , 7.0a , 8.0b , 9.0c ,

1d , 08.0 , and 0001.0 ) to the external
forcing ( 025.0w , 20u ): (A) in the robust part
(left from the dashed line) the system remains
practically unaffected, (B) in the flexible part (right
from the dashed line) the external pulse evokes a new
bursting phase.
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In the reference case (Fig. 1) the robustness equals
0.44, which means that 44% of the whole oscillatory
period is robust in the sense that in this part the
system is not considerably disturbed by the external
forcing. The question arises why the system responds
in one (flexible) part of the oscillation period and
does not respond in another (robust) part. To answer
this question, we calculate the time course of the local
divergence for the corresponding attractor in the
phase space. If namely an attractor has a weakly
attractive part, i.e. a region with close to zero local
divergence, it can easily adapt its shape, thus an
alteration of the original time course due to an
external forcing is more likely to occur. On the other
hand, in regions with considerably negative local
divergence the trajectory has a well-defined
immutable path in the phase space. Consequently, in
these strong attractive areas, it is much more difficult
to alter the shape of the attractor and therefore the
robustness of these parts is much higher. Thus, the
investigation of the interrelation between the local
divergence and the robustness of the system seems to
be reasonable.

We determine the local divergence for the vector
field
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We calculate the time course of the local divergence
for the reference case (Fig. 1). The result is presented
in Fig. 2. In the inset of Fig. 2 it is evident that in the
flexible part (right from the dashed line) the local
divergence is slightly positive, whereas in the robust
part (left from the dashed line) the local divergence is
slightly negative.

To analyse the relationship between the robustness
and the local divergence more systematically, we
calculated the robustness (R) for several oscillatory
states. The robustness has been calculated for the
oscillatory states obtained by varying the current I
from 27.0I  to 4.0I . In this parameter region,
the oscillatory states are characterised by simple
regular bursting oscillations, which enables a relevant
comparison of the results. The results are presented in
Fig. 3.

Fig. 2 Time course of the local divergence for the
reference case (for the parameter values see text and
Fig. 1).

Fig. 3 Robustness (R) of the model system in
dependence on the parameter I.

In accordance with the results in Fig. 3, we also
calculated time courses of the local divergence for
various values of I. The obtained results were
qualitatively the same as those presented in Fig. 2;
however, the time courses considerably differ in the
extension of regions with positive and negative local
divergence. To quantify this, we have averaged the
local divergence for each oscillatory regime. The
results are presented in Fig. 4.

By comparing Figs. 3 and 4, it is evident that the
robustness strongly depends on the divergence.
Highly robust oscillatory states are characterised by a
more negative divergence of the corresponding
attractor, whereas less negative values of the
divergence characterise less robust systems. Note,
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however, that in dissipative systems the time-
averaged divergence is negative for every oscillatory
as well as non-oscillatory state. It should also be
noted that in Fig. 3 the robustness only seemingly
approaches to a maximum value. This maximum is
directly linked to the chosen value of w, in the sense
that for studying the robustness of the system at
higher values of I, also the value of w has to be
enlarged. The results for larger values of w are
qualitatively the same as those shown in Fig. 3.

Fig. 4 Time-averaged divergence in dependence on
the parameter I.

4  Discussion
We studied the robustness of oscillatory states in a
mathematical model of an excitable neuron. The
robustness of the system was examined by analysing
the responses of the model system to a pulsatile
external forcing. In accordance with our previous
studies for calcium dynamics [4-9], we show that the
robustness of an examined oscillatory state in the
neuron model can be determined by the divergence
calculated along the trajectory of the corresponding
attractor. A more robust oscillator is characterised by
a more negative divergence of the corresponding
attractor, whereas less negative values of the
divergence characterise less robust systems. This can
be well explained intuitively. If namely an attractor is
weakly attractive, i.e. has a close to zero local
divergence, it can easily be shaped by an external
forcing, whereas on the other hand the external
forcing has practically no effect on robust attractors
with a highly negative divergence. It should be noted,
of course, that the divergence, usually expressed as
the sum of Lyapunov exponents, has been used

before, mainly in the sense of relating it with the
entropy production rate (e.g. [14]). However, here the
sum of Lyapunov exponents is used for estimating the
robustness of a dynamical system.

The studies concerning the flexibility and
robustness of dynamical systems are widely
applicable. In our previous studies, we showed some
applications for calcium oscillations. One of the most
direct applications concerns cell coupling by gap
junctions. We showed that the coupling ability of an
oscillator depends on the local divergence of the
corresponding attractor. For a facilitated gap
junctional coupling, the system has to be flexible, i.e.
the local divergence of the corresponding attractor has
to be close to zero [8,9]. These studies, concerning
gap junctional coupling of calcium oscillators, seem
to be easily transferable to the cell coupling in
neuronal systems. In the last decade several new
findings have shown that in the neuronal cell
networks, involving neurons, astrocytes, microglia,
and oligodendrocytes, the gap junctional coupling
also plays the key role in maintaining the normal
physiological functioning of the system (for review
see [15,16]).

Another important application of studies regarding
flexibility and robustness of dynamical systems
concerns the influences of noise and other sub-
threshold signals on the behaviour of a given system.
Previously, we studied the effect of noise on the
robustness of calcium oscillations [6] and in particular
the role of the local divergence in explaining the
frequency dependent stochastic resonance [7]. All
these results obtained for calcium oscillations could
be transferred to neuronal cell networks; however,
since we know that calcium plays an important role in
the neuronal systems as well, the results should not be
simply transferred but also systematically integrated
into this area of research, striving towards a deeper
understanding of the whole physiological functioning
of the system.
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